在kaggle上的结果(评判标准是Categorization Accuracy):
-
simple_baseline = 0.88675
-
strong_baseline = 0.89102
-
private score为0.89110对应的排名是99/285
-
手写linear的cross entropy的gradient descent的performance往往会比用keras写神经网络要来的好
-
特征工程是进一步优化的思路
method | Public Score | Private Score |
---|---|---|
predict_adagrad_gd | 0.88878 | 0.89110 |
predict_adagrad_gd | 0.88929 | 0.89052 |
predict_adagrad_sgd | 0.88842 | 0.88863 |
predict_keras | 0.88769 | 0.88900 |
predict_keras | 0.88798 | 0.88675 |