-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaddress_frame.py
339 lines (303 loc) · 12.4 KB
/
address_frame.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""
Class for address dataframe
Contains common functions for cleaning and geocoding.
"""
import pandas as pd
import os
import re
import requests
import json
import numpy as np
import pandas as pd
from dotenv import load_dotenv
from geopy.exc import GeocoderUnavailable
from geopy.geocoders import Nominatim
from time import time
load_dotenv()
class AddressFrame:
"""
Essentially a Pandas DataFrame with useful methods for geocoding.
Parameters
-------
frame: pd.DataFrame
add_col: str
Column name of address data in frame.
city_col: str
Column name of city data in frame.
state_col: str
Column name of state data in frame.
zip_col: str
Column name of postalcode data in frame.
state_filter: str | list, default None
Keeps only geo results of states in state_filter. If None all geo results are kept.
Useful when Nominatim server only has select states. If an address is in a state outside the server data
then sometimes Nominatim will find the given address in the wrong state.
Returns
-------
Raises
------
requests.exceptions.ConnectionError
_description_
"""
NOM_URL = os.getenv('NOM_URL')
# Initialize Nominatim
if NOM_URL is None:
print('Please create .env file with NOM_URL or set with AddressFrame.set_geocoder_url method')
else:
nom = Nominatim(domain=NOM_URL, scheme='http')
def __init__(self, frame: pd.DataFrame, add_col: str, city_col: str, state_col: str, zip_col: str,
state_filter=None, keep_temp_cols=True):
self.frame = frame
self.add_col = add_col
self.city_col = city_col
self.state_col = state_col
self.zip_col = zip_col
self.state_filter = state_filter
def verify_col(self, column):
if not isinstance(column, str):
print(f'{column} should be of type: str')
return False
elif not column in self.frame.columns:
print(f'{column} not in AddressFrame columns.')
return False
return True
def clean_streets(self, rplc_abbrvs=True):
if self.verify_col(self.add_col):
self.__setattr__('temp_add_field', 'cleaned_add_field')
self.convert_field_to_str(self.add_col)
self.frame[self.temp_add_field] = self.frame[self.add_col].apply(
self._shorten_streets)
if rplc_abbrvs:
self.frame[self.temp_add_field] = self.frame[self.temp_add_field].apply(
self._street_cleaner)
else:
print('Streets will not be cleaned...')
return self
def clean_zips(self):
if self.verify_col(self.zip_col):
self.__setattr__('temp_zip_field', 'cleaned_zip_field')
self.convert_field_to_str(self.zip_col)
self.frame[self.temp_zip_field] = self.frame[self.zip_col].apply(
self._zip_cleaner)
else:
print('Zipcodes will not be cleaned...')
return self
def clean_cities(self):
if self.verify_col(self.city_col):
self.__setattr__('temp_city_field', 'cleaned_city_field')
self.convert_field_to_str(self.city_col)
self.frame[self.temp_city_field] = self.frame[self.city_col].apply(
self._city_cleaner)
else:
print('Cities will not be cleaned...')
return self
def clean_states(self):
# todo could use fuzzy matching here to find and correct misspelled states (if using full state names)
pass
def geocode(self, geo_report=False):
"""
Geocode the cleaned addresses if they exist. Geos will be added inplace to frame in new column.
If cleaned address fields do not exist then use original.
"""
# check if frame has cleaned field attrs
has_temp_attrs = [hasattr(self, 'temp_add_field'),
hasattr(self, 'temp_city_field')]
# if yes use them, otherwise use originals
if all(has_temp_attrs):
add_field, city_field = self.temp_add_field, self.temp_city_field
else:
add_field, city_field = self.add_col, self.city_col
# temp geo field dict
tgf = {'temp_ac': 'temp_add_city',
'ac_geo': 'add_city_geo', 'a_geo': 'add_geo'}
# 1: create add-city field and lookup
self.frame[tgf['temp_ac']] = self.frame[add_field] + \
', ' + self.frame[city_field]
# start timer for geocoder
geocoding_start = time()
try:
self.frame[tgf['ac_geo']] = self.frame[tgf['temp_ac']].apply(
self.__class__.nom.geocode)
# 2: lookup with just add
self.frame[tgf['a_geo']] = self.frame[add_field].apply(
self.__class__.nom.geocode)
geocoding_stop = time()
print(
f'Geocoded dataset in {(geocoding_stop - geocoding_start):.2f}s.')
except AttributeError:
print('Unable to geocode. Please create .env file with NOM_URL or set with AddressFrame.set_geocoder_url '
'method')
# stop timer for geocoder
# 3: combine geo fields
self.__setattr__('geo_field', 'geo')
self.frame[self.geo_field] = np.where(self.frame[tgf['ac_geo']].isna(
), self.frame[tgf['a_geo']], self.frame[tgf['ac_geo']])
# 4: drop temp columns
self.frame.drop(columns=tgf.values(), inplace=True)
# 5: filter states out
if self.state_filter:
# where state is in state filter -> replace result with 0
if isinstance(self.state_filter, list):
filter_str = '|'.join(self.state_filter).upper()
self.frame.loc[~self.frame[self.state_col].str.contains(
filter_str, regex=True, case=False), self.geo_field] = 0
elif isinstance(self.state_filter, str):
self.frame.loc[~self.frame[self.state_col].str.contains(
self.state_filter.upper(), regex=True, case=False), self.geo_field] = 0
# 6: create lat/lon fields and extract
self.frame[['lat', 'lon']] = 0
self.frame.reset_index(drop=True, inplace=True)
# 7: create report if true
for i, _ in self.frame.iterrows():
try:
self.frame.loc[i, 'lat'], self.frame.loc[i,
'lon'] = self.frame[self.geo_field].array[i][1][0], self.frame[self.geo_field].array[i][1][1]
except:
self.frame.loc[i, 'lat'], self.frame.loc[i, 'lon'] = None, None
if geo_report:
self._create_geo_report()
return self
def clean_and_geocode(self, geo_report=False):
# clean streets, cities, zips THEN geocode
self.clean_streets().clean_cities().clean_zips().geocode()
if geo_report:
self._create_geo_report()
def _create_geo_report(self):
# wip
num_adds = len(self.frame)
num_no_geo = self.frame.lat.isna().sum()
num_geos = num_adds - num_no_geo
num_adds_filtered_by_state = self.frame.loc[self.frame[self.geo_field] == 0].shape[0]
# adds_within_state_filter = 0
print(f"""
Total Addresses: {num_adds}
State Filtered Addresses: {num_adds_filtered_by_state}
Geo Results: {num_geos}
Geo Result %: {(num_geos / num_adds) * 100:.2f}%
Geo Results w/ State Filter Correction: {(num_geos / (num_adds - num_adds_filtered_by_state)) * 100:.2f}%
""")
@classmethod
def test_geocoder_url(cls, url, scheme):
try:
Nominatim(domain=url, scheme=scheme).geocode('')
return True
except GeocoderUnavailable:
print('Geocoder is not available. Please verify cls.NOM_URL')
return False
@classmethod
def set_geocoder_url(cls, url, scheme='http'):
"""
Set url of Nominatim server.
Parameters
----------
url : str
Should be of the form XXX.XX.X.X:<PORT>
scheme : str, default 'http'
Scheme of url.
"""
if cls.test_geocoder_url(url=url, scheme=scheme):
cls.nom = Nominatim(domain=url, scheme=scheme)
# log
print(f'Geocoder api updated to {cls.nom.api}')
else:
raise requests.exceptions.ConnectionError
def convert_field_to_str(self, column: str):
self.frame[column] = self.frame[column].astype(str)
def _shorten_streets(self, street: str, subs=None) -> str:
"""
Given string of street information, remove specific information e.g suite, apt, unit.
Also remove extra information at the end of the string.
Params:
street: str
Street in the form of a typical address line 1
subs: list of tuples | lists, default None
List used for pattern and replacement pairings. e.g. [(pat_1, rep_1), (pat_2, rep_2)]
"""
# if subs not provided then use default
if subs is None:
subs = [(r'[\s]?(suite|plaza|unit|floor).*', ''),
(r'\Wapt.*', ''),
(r'^one(?=\s)', '1'),
(r'(?<=\W(ln|rd|dr|pl)).*', ''),
(r'(?<=\Wave).*', ''),
(r'(?<=\Wblvd).*', '')]
# confirm type(subs) is list. if not then return original street.
if not isinstance(subs, list):
return street
# iterate over subs and replace patterns with replacements
for tup in subs:
try:
street = re.sub(tup[0], tup[1], street, flags=re.I)
except IndexError:
print(
'Param subs must be list of tuples or lists. e.g. [(pat_1, rep_1), (pat_2, rep_2)]')
return street
def _zip_cleaner(self, zipcode: str):
"""
Converts from 9 digit zipcode to 5 digit
"""
if not isinstance(zipcode, str):
zipcode = str(zipcode)
if re.search(r'[a-zA-Z]', zipcode):
return 0
return re.sub(r'\-[\d]*$', '', zipcode)
def _city_cleaner(self, city, city_abrvs=None):
"""Converts common abbreviations in city names to full words.
Parameters
----------
city : str
city_abrvs : dict, default None
Dictionary containing abrv:value pairs
Returns
-------
str
Returns cleaned string of city
"""
if city_abrvs is None:
city_abrvs = {
r'^[E][\.\s]': 'EAST ',
r'^[N][\.\s]': 'NORTH ',
r'^[W][\.\s]': 'WEST ',
r'^[S][\.\s]': 'SOUTH ',
r'(?<!\w)ST[\.\s]': 'SAINT ',
r'(?<!\w)STE[\.\s]': 'SAINTE '
}
if not isinstance(city_abrvs, dict):
return 'abbreviation dict should be dictionary containing abrv:value pairs'
city = city.upper()
for abrv, full in city_abrvs.items():
city = re.sub(abrv, full, city)
# replace common punctuation
city = city.replace(' ', ' ').replace("'", ' ').replace('.', '')
return city
def _street_cleaner(self, street, street_abrvs=None):
"""Converts common abbreviations in street names to full words.
Parameters
----------
street : str
street_abrvs : dict, default None
Dictionary containing abrv:value pairs
Returns
-------
str
Returns cleaned string of street
"""
if street_abrvs is None:
street_abrvs = {
r'^[E][\.\s]': 'EAST ',
r'^[N][\.\s]': 'NORTH ',
r'^[W][\.\s]': 'WEST ',
r'^[S][\.\s]': 'SOUTH ',
r'hwy': 'HIGHWAY',
}
if not isinstance(street_abrvs, dict):
print(street_abrvs, street)
return 'abbreviation_dict should be dictionary containing abrv:value pairs'
if isinstance(street, str):
street = street.upper()
for abrv, full in street_abrvs.items():
street = re.sub(abrv, full, street, flags=re.I)
# some of the replaces below are probably redundant from shorten_street function
punc = [r'\.', r'\,', ' ', "'"]
street = re.sub('|'.join(punc), '', street, flags=re.I)
return street