-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrecognizer.py
1078 lines (926 loc) · 50.7 KB
/
recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
"""
reCOGnizer - a tool for functional annotation with COGs
By João Sequeira
Nov 2019
"""
import shutil
from argparse import ArgumentParser, ArgumentTypeError
from glob import glob
import os
from pathlib import Path
from shutil import which
from subprocess import run, Popen, PIPE, check_output
import sys
import numpy as np
import pandas as pd
from tqdm import tqdm
from multiprocessing import Pool, cpu_count, Manager
from time import time, gmtime, strftime
from requests import get as requests_get
import xml.etree.ElementTree as ET
import re
__version__ = '1.11.2'
print_commands = False # for debugging purposes, can be changed with --debug parameter
prefixes = { # database name (as in https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) to tuple of (PN name, smp prefixes)
'NCBI_Curated': ('Cdd_NCBI', ('cd', 'sd')), 'Pfam': ('Pfam', ('pfam')), 'SMART': ('Smart', ('smart')),
'KOG': ('Kog', ('KOG')), 'COG': ('Cog', ('COG')), 'PRK': ('Prk', ('CHL', 'MTH', 'NF', 'PHA', 'PLN', 'PRK', 'PTZ')),
'TIGR': ('Tigr', ('TIGR'))}
def get_arguments():
parser = ArgumentParser(
description="reCOGnizer - a tool for domain based annotation with the CDD database",
epilog="Input file must be specified.")
parser.add_argument("-f", "--file", help="Fasta file with protein sequences for annotation")
parser.add_argument(
"-t", "--threads", type=int, default=cpu_count(),
help="Number of threads for reCOGnizer to use [max available]")
parser.add_argument(
"--evalue", type=float, default=1e-3, help="Maximum e-value to report annotations for [1e-3]")
parser.add_argument(
"-o", "--output", help="Output directory [reCOGnizer_results]", default='reCOGnizer_results')
parser.add_argument(
"-rd", "--resources-directory", default=os.path.expanduser('~/recognizer_resources'),
help="Output directory for storing databases and other resources [~/recognizer_resources]")
parser.add_argument(
"-dbs", "--databases", default="NCBI_Curated,Pfam,SMART,KOG,COG,PRK,TIGR",
help="Databases to include in functional annotation (comma-separated) "
"[NCBI_Curated,Pfam,SMART,KOG,COG,PRK,TIGR]")
parser.add_argument(
"--custom-databases", action="store_true", default=False,
help="If databases inputted were NOT produced by reCOGnizer [False]. Default databases of reCOGnizer "
"(e.g., COG, TIGR, ...) can't be used simultaneously with custom databases. Use together with the "
"'--databases' parameter.")
parser.add_argument(
"-mts", "--max-target-seqs", type=int, default=20,
help="Number of maximum identifications for each protein [1]")
parser.add_argument(
"--keep-spaces", action="store_true", default=False,
help="BLAST ignores sequences IDs after the first space. "
"This option changes all spaces to underscores to keep the full IDs.")
parser.add_argument(
"--no-output-sequences", action="store_true", default=False,
help="Protein sequences from the FASTA input will be stored in their own column.")
parser.add_argument(
"--no-blast-info", action="store_true", default=False,
help="Information from the alignment will be stored in their own columns.")
parser.add_argument(
"--output-rpsbproc-cols", action="store_true", default=False,
help="Output columns obtained with RPSBPROC - 'Superfamilies', 'Sites' and 'Motifs'.")
parser.add_argument(
"--keep-intermediates", default=False, action='store_true',
help="Keep intermediate annotation files generated in reCOGnizer's workflow, "
"i.e., ASN, RPSBPROC and BLAST reports and split FASTA inputs.")
parser.add_argument(
"--quiet", action="store_true", default=False,
help="Don't output download information, used mainly for CI.")
parser.add_argument(
"--debug", action="store_true", default=False,
help="Print all commands running in the background, including those of rpsblast and rpsbproc.")
parser.add_argument(
"--test-run", action="store_true", default=False,
help="This parameter is only appropriate for reCOGnizer's tests on GitHub. Should not be used.")
parser.add_argument('-v', '--version', action='version', version=f'reCOGnizer {__version__}')
taxArguments = parser.add_argument_group('Taxonomy Arguments')
taxArguments.add_argument(
"--tax-file", default=None,
help="File with taxonomic identification of proteins inputted (TSV). "
"Must have one line per query, query name on first column, taxid on second.")
taxArguments.add_argument(
"--protein-id-col", default='qseqid',
help="Name of column with protein headers as in supplied FASTA file [qseqid]")
taxArguments.add_argument(
"--tax-col", default='Taxonomic identifier (SPECIES)',
help="Name of column with tax IDs of proteins [Taxonomic identifier (SPECIES)]")
taxArguments.add_argument(
"--species-taxids", default=False, action='store_true',
help="If tax col contains Tax IDs of species (required for running COG taxonomic)")
args = parser.parse_args()
args.output = args.output.rstrip('/')
args.resources_directory = args.resources_directory.rstrip('/')
args.databases = args.databases.split(',')
global print_commands
print_commands = args.debug
# database inputs check - if custom databases, check if they are in the correct format.
# If default databases, check if all are recognized. If using both default and custom, exit.
if not args.custom_databases:
for database in args.databases:
if database not in prefixes.keys():
exit(f'Default database {database} not recognized. Must be one of {",".join(prefixes.keys())}. Exiting.')
else:
for database in args.databases:
if database in prefixes.keys():
exit(f"Default database {database} can't be used with custom databases.")
if not is_db_good(database):
exit(f"Custom database {database} not in correct format. Exiting.")
if args.file:
for directory in [f'{args.output}/{folder}' for folder in ['asn', 'blast', 'rpsbproc', 'tmp']] + [
f'{args.resources_directory}/dbs']:
if not os.path.isdir(directory):
Path(directory).mkdir(parents=True, exist_ok=True)
print(f'Created {directory}')
return args
def timed_message(message):
print(f'{strftime("%Y-%m-%d %H:%M:%S", gmtime())}: {message}')
def run_command(bash_command, print_command=print_commands, stdout=None, stderr=None):
if print_command:
print(f'{bash_command}\n')
run(bash_command.split(), stdout=stdout, stderr=stderr)
def human_time(seconds):
days = seconds // 86400
if days > 0:
return strftime(f"{days}d%Hh%Mm%Ss", gmtime(seconds))
return strftime("%Hh%Mm%Ss", gmtime(seconds))
def run_pipe_command(bash_command, file='', mode='w', print_command=print_commands, report_runtime=True):
if print_command:
print(f'{bash_command}{f" > {file}" if file != "" else ""}')
if file == '':
process = Popen(bash_command, stdin=PIPE, shell=True)
process.communicate()
if process.returncode != 0 and report_runtime:
raise RuntimeError(f"Command '{bash_command}' failed with exit code {process.returncode}")
elif file == 'PIPE':
process = Popen(bash_command, stdin=PIPE, shell=True, stdout=PIPE)
output = process.communicate()[0].decode('utf8')
if process.returncode != 0 and report_runtime:
raise RuntimeError(f"Command '{bash_command}' failed with exit code {process.returncode}")
return output
else:
with open(file, mode) as output_file:
process = Popen(bash_command, stdin=PIPE, shell=True, stdout=output_file)
process.communicate()
if process.returncode != 0 and report_runtime:
raise RuntimeError(f"Command '{bash_command}' failed with exit code {process.returncode}")
def get_tabular_taxonomy(output):
res = requests_get('https://ftp.expasy.org/databases/uniprot/current_release/rdf/taxonomy.rdf.xz')
with open('taxonomy.rdf.xz', 'wb') as f:
f.write(res.content)
run_command(f'unxz taxonomy.rdf.xz')
timed_message('Building taxonomy.tsv')
root = ET.parse('taxonomy.rdf').getroot()
elems = root.findall('{http://www.w3.org/1999/02/22-rdf-syntax-ns#}Description')
with open(output, 'w') as f:
written = f.write('\t'.join(
['taxid', 'name', 'rank', 'parent_taxid']) + '\n') # assignment to "written" stops output to console
for elem in elems:
info = [elem.get('{http://www.w3.org/1999/02/22-rdf-syntax-ns#}about').split('/')[-1]]
scientific_name = elem.find('{http://purl.uniprot.org/core/}scientificName')
info.append(scientific_name.text if scientific_name is not None else '')
rank_elem = elem.find('{http://purl.uniprot.org/core/}rank')
info.append(rank_elem.get('{http://www.w3.org/1999/02/22-rdf-syntax-ns#}resource').split('/')[-1]
if rank_elem is not None else '')
upper_taxon = elem.find('{http://www.w3.org/2000/01/rdf-schema#}subClassOf')
info.append(upper_taxon.get('{http://www.w3.org/1999/02/22-rdf-syntax-ns#}resource').split('/')[-1]
if upper_taxon is not None else '')
written = f.write('\t'.join(info) + '\n')
os.remove('taxonomy.rdf')
def download_resources(directory, quiet=False, test_run=False):
timestamp_file = f'{directory}/recognizer_dwnl.timestamp'
if os.path.isfile(timestamp_file):
with open(timestamp_file) as f:
timed_message(f'Download timestamp found. Files were downloaded at {f.read()}')
return
timed_message(
f"Didn't found the timestamp file [{directory}/recognizer_dwnl.timestamp], going to download resources.")
if sys.platform == "darwin":
if which('gtar') is None:
sys.exit('System is darwin, and gnu-tar was not found. You can install gnu-tar with: brew install gnu-tar')
if not os.path.isdir(f'{directory}/smps'):
Path(f'{directory}/smps').mkdir(parents=True, exist_ok=True)
print(f'Created {directory}/smps')
web_locations = [
# Download CDD
'ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/cdd.tar.gz',
'https://ftp.ncbi.nlm.nih.gov/pub/mmdb/cdd/cddid_all.tbl.gz',
'https://ftp.ncbi.nlm.nih.gov/pub/mmdb/cdd/cdd.info', # only for versions
# RPSBPROC
'https://ftp.ncbi.nih.gov/pub/mmdb/cdd/bitscore_specific.txt',
'https://ftp.ncbi.nih.gov/pub/mmdb/cdd/cddannot.dat.gz',
'https://ftp.ncbi.nih.gov/pub/mmdb/cdd/cddannot_generic.dat.gz',
'https://ftp.ncbi.nih.gov/pub/mmdb/cdd/cddid.tbl.gz',
'https://ftp.ncbi.nih.gov/pub/mmdb/cdd/cdtrack.txt',
'https://ftp.ncbi.nih.gov/pub/mmdb/cdd/family_superfamily_links',
# COG categories
'ftp.ncbi.nlm.nih.gov/pub/COG/COG2020/data/fun-20.tab',
'ftp.ncbi.nlm.nih.gov/pub/COG/COG2020/data/cog-20.def.tab',
# COG2EC
'http://eggnogdb.embl.de/download/eggnog_4.5/eggnog4.protein_id_conversion.tsv.gz',
'http://eggnogdb.embl.de/download/eggnog_4.5/data/NOG/NOG.members.tsv.gz',
# COG2KO
'https://stringdb-static.org/download/COG.mappings.v11.0.txt.gz',
'https://stringdb-static.org/download/protein.info.v11.0.txt.gz',
# NCBIfam, TIGRFAM, Pfam, PRK (protein clusters)
'https://ftp.ncbi.nlm.nih.gov/hmm/4.0/hmm_PGAP.tsv',
# SMART
'https://smart.embl.de/smart/descriptions.pl',
# KOG
'https://ftp.ncbi.nlm.nih.gov/pub/COG/KOG/kog'
]
for location in web_locations:
filename = location.split('/')[-1]
if filename == 'cdd.tar.gz' and test_run: # "test_run" allows CI/CD tests to run on GHA
os.rename('reCOGnizer/cicd/cdd.tar.gz', f'{directory}/cdd.tar.gz')
continue
if os.path.isfile(f"{directory}/{filename}"):
print(f"Removing {directory}/{filename}")
os.remove(f"{directory}/{filename}")
print(f'Downloading {location}')
run_command(f'wget {location} -P {directory}{" -q" if quiet else ""}')
if filename.endswith('.gz') and not filename.endswith('.tar.gz'):
if os.path.isfile(f"{directory}/{filename}"[:-3]): # filename without .gz
os.remove(f"{directory}/{filename}"[:-3])
run_command(f'gunzip {directory}/{filename}', print_command=True)
# Extract the SMPs
run_pipe_command(
f'{"gtar" if sys.platform == "darwin" else "tar"} -xzf {directory}/cdd.tar.gz -C {directory}/smps',
print_command=True)
#os.remove('cdd.tar.gz') # no idea why I put it doing this, maybe to free space?
get_tabular_taxonomy(f'{directory}/taxonomy.tsv')
with open(timestamp_file, 'w') as f:
f.write(strftime("%Y-%m-%d %H:%M:%S", gmtime()))
def str2bool(v):
if v.lower() == 'auto':
return 'auto'
elif v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise ArgumentTypeError('Boolean value expected.')
def run_rpsblast(query, output, reference, threads='0', max_target_seqs=1, evalue=1e-2, outfmt=11, report_runtime=True):
# This run_command is different because of reference, which can't be split by space
bash_command = (
f'rpsblast -query {query} -db "{reference}" -out {output} -outfmt {outfmt} -num_threads {threads} '
f'-max_target_seqs {max_target_seqs} -evalue {evalue}')
run_pipe_command(bash_command, report_runtime=report_runtime)
def parse_cddid(cddid):
cddid = pd.read_csv(cddid, sep='\t', header=None)[[0, 1, 3]]
cddid.columns = ['CDD ID', 'DB ID', 'DB description']
# cddid['CDD ID'] = [f'CDD:{ide}' for ide in cddid['CDD ID']] # for now, seems to no longer be required
return cddid
def expand_by_list_column(df, column='Functional category (letter)'):
lens = [len(item) for item in df[column]]
dictionary = {}
for col in df.columns:
dictionary[col] = np.repeat(df[col].values, lens)
dictionary[column] = np.concatenate(df[column].values)
return pd.DataFrame(dictionary)
def parse_whog(whog):
df = pd.read_csv(whog, sep='\t', usecols=[0, 1, 2], header=None, encoding='ISO 8859-1')
df.columns = ['DB ID', 'Functional category (letter)', 'product_name']
df['Functional category (letter)'] = df['Functional category (letter)'].apply(lambda x: [i for i in x])
df = expand_by_list_column(df, column='Functional category (letter)')
return df
def parse_kog(kog):
lines = []
for line in [line.rstrip('\n') for line in open(kog).readlines() if line.startswith('[')]:
line = line.split()
lines.append([line[0][1], line[1], ' '.join(line[2:])])
df = pd.DataFrame(lines)
df.columns = ['Functional category (letter)', 'DB ID', 'product_name']
df['Functional category (letter)'] = df['Functional category (letter)'].apply(lambda x: [i for i in x])
df = expand_by_list_column(df, column='Functional category (letter)')
return df
def parse_blast(file):
blast_cols = [
'qseqid', 'sseqid', 'pident', 'length', 'mismatch', 'gapopen', 'qstart', 'qend', 'sstart', 'send', 'evalue',
'bitscore']
if os.stat(file).st_size != 0:
blast = pd.read_csv(file, sep='\t', header=None)
blast.columns = blast_cols
return blast
return pd.DataFrame(columns=blast_cols)
def pn2database(pn, out_dir):
work_dir = os.getcwd()
out_dir = os.path.abspath(out_dir)
os.chdir(os.path.dirname(pn))
pn_name = pn.split('/')[-1].split('.pn')[0]
run_command(f"makeprofiledb -in {pn_name}.pn -title {pn_name} -out {out_dir}/{pn_name} "
f"-max_smp_vol 1000000", print_command=True)
os.chdir(work_dir)
def split(a, n):
k, m = divmod(len(a), n)
return (a[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n))
def get_upper_taxids(taxid, tax_df):
"""
:param taxid: str - taxID to get upper taxIDs from
:param tax_df: pd.DataFrame - of read taxonomy.tsv (from taxonomy.rdf)
:returns list - of upper taxIDs
"""
if taxid == '0':
return []
taxids = []
while taxid != '1' and taxid != 'Taxon':
taxids.append(taxid)
taxid = tax_df.loc[taxid]['parent_taxid']
return taxids
def get_lineages(taxids, taxonomy_df):
lineages = {}
all_taxids = []
for taxid in taxids:
lineage = get_upper_taxids(taxid, taxonomy_df)
lineages[taxid] = lineage
all_taxids += lineage
return lineages, all_taxids
def get_lineages_multiprocessing(taxids, taxonomy_df, threads=14):
timed_message(f'Listing all parent tax IDs for {len(taxids)} tax IDs using {threads} threads')
taxids_groups = split(list(taxids), threads)
lineages, res_taxids = ({}, [])
with Manager() as m:
with m.Pool() as p:
result = p.starmap(get_lineages, [(taxids_group, taxonomy_df) for taxids_group in taxids_groups])
for res in result:
lineages = {**lineages, **res[0]}
res_taxids += res[1]
return lineages, res_taxids
def create_tax_db(smp_directory, db_directory, db_prefix, taxids, hmm_pgap):
"""
Creates HMM DBs for all required tax IDs, and checks for DBS for cellular organisms and 0 (nan)
:param smp_directory: (str) - Name of folder with the SMP files
:param db_directory: (str) - Name of folder to store the PN files and databases
:param db_prefix: (str) - Filename prefix for PN files and databases
:param taxids: (list) - list of tax ids present in the dataset lacking db
:param hmm_pgap: (pandas.DataFrame) - df with the information from the hmm_GAP.tsv file
"""
taxids_with_db = []
if len(taxids) == 0:
return []
for taxid in tqdm(taxids, desc=f'Organizing PN files for [{len(taxids)}] Tax IDs.', ascii=' >='):
smp_list = hmm_pgap[hmm_pgap['taxonomic_range'] == taxid]['source_identifier'].tolist()
with open(f'{smp_directory}/{db_prefix}_{taxid}.pn', 'w') as f:
f.write('\n'.join([f'{file}.smp' for file in set(smp_list)]))
for taxid in taxids:
pn2database(f'{smp_directory}/{db_prefix}_{taxid}.pn', db_directory)
taxids_with_db.append(taxid)
return taxids_with_db
def is_db_good(database, print_warning=True):
for ext in ['aux', 'freq', 'loo', 'pdb', 'phr', 'pin', 'pos', 'pot', 'psq', 'ptf', 'pto', 'rps']:
if not os.path.isfile(f'{database}.{ext}'):
if print_warning:
print(f'{database}.{ext} not found!')
return False
# print(f'{database} seems good!')
return True
# ===========================
# COG to EC number conversion
# ===========================
def read_ecmap(fh):
enzymes = []
proteins = []
for line in fh:
items = line.split("\t")
m = re.compile(r"EC:[1-6-]\.[0-9-]+\.[0-9-]+\.[0-9-]+").search(items[2])
try:
ec = m.group().split(":")[1]
except AttributeError:
continue
member = f"{items[0]}.{items[1]}"
proteins.append(member)
enzymes.append(ec)
return enzymes, proteins
def ecmap(ec_file):
with open(ec_file) as handler:
enzymes, proteins = read_ecmap(handler)
return enzymes, proteins
def read_cogmap(cogmap_handler):
cogs = []
proteins = []
for line in cogmap_handler:
items = line.split("\t")
prots = items[-1].split(",")
cog = [items[1]] * len(prots)
cogs += cog
proteins += prots
return cogs, proteins
def cogmap(file):
with open(file) as handler:
cogs, proteins = read_cogmap(handler)
return cogs, proteins
def determine_cog2ec(map_df, frac=0.5):
# Group by cog and enzyme to get number of each EC assignment per cog
map_df_counts = map_df.groupby(["enzyme", "cog"]).count().reset_index()
map_df_counts.index = map_df_counts.cog
map_df_counts.drop("cog", axis=1, inplace=True)
map_df_counts.sort_index(inplace=True)
# Count total number of proteins per cog
cog_counts = map_df_counts.groupby(level=0).sum(numeric_only=True)
# Divide enzyme assignment number by total protein number to get fraction of each assignment
ecfrac = map_df_counts.protein.div(cog_counts.protein).reset_index()
# Get index of where fraction is above threshold
index = ecfrac.loc[ecfrac.protein >= frac].index
# Return mappings where fraction is above threshold
return map_df_counts.iloc[index]
def generate_cog2ec_tsv(resources_directory, output):
timed_message("Generating COG to EC mapping")
enzymes, proteins = ecmap(f'{resources_directory}/eggnog4.protein_id_conversion.tsv')
ecmap_df = pd.DataFrame(data={"enzyme": enzymes, "protein": proteins})
cogs, proteins = cogmap(f'{resources_directory}/NOG.members.tsv')
cogmap_df = pd.DataFrame(data={"cog": cogs, "protein": proteins})
map_df = pd.merge(ecmap_df, cogmap_df, left_on="protein", right_on="protein")
cog2ec_df = determine_cog2ec(map_df)
cog2ec_df.loc[:, "enzyme"].to_csv(output, sep="\t")
def cog2ec(cogblast, resources_directory, cog2ec_tsv):
if not os.path.isfile(cog2ec_tsv):
generate_cog2ec_tsv(resources_directory, cog2ec_tsv)
cog2ec_df = pd.read_csv(cog2ec_tsv, sep='\t', names=['DB ID',
'ec_number']) # keep the column name as "ec_number" for compatibility with the other databases
return pd.merge(cogblast, cog2ec_df, on='DB ID', how='left')
# ===========================
# COG to KO conversion
# ===========================
def generate_cog2ko_tsv(resources_directory, output, threshold=0.5):
timed_message('Generating COG to KO mapping')
run_pipe_command(
f"grep -E 'K[0-9]{{5}}$' {resources_directory}/protein.info.v11.0.txt | "
f"awk '{{if (length($NF) == 6) print $1, $NF}}'", file=f'{resources_directory}/string2ko.ssv')
run_pipe_command(
"""awk '{{if (length($4) == 7) print $1" "$4}}' {0}/COG.mappings.v11.0.txt""",
file=f'{resources_directory}/string2cog.ssv')
df1 = pd.read_csv(f'{resources_directory}/string2ko.ssv', sep=' ', names=['StringDB', 'KO'])
df2 = pd.read_csv(f'{resources_directory}/string2cog.ssv', sep=' ', names=['StringDB', 'COG'])
df_merged = pd.merge(df1, df2, on='StringDB', how='inner')
total_counts = df_merged['COG'].value_counts()
percentages = df_merged.groupby('COG')['KO'].value_counts() / total_counts
percentages[percentages > threshold].index.to_frame(index=False).to_csv(output, sep='\t', index=False)
for file in ['string2ko.ssv', 'string2cog.ssv']:
os.remove(f'{resources_directory}/{file}')
def cog2ko(cogblast, resources_directory, cog2ko_tsv=f'{sys.path[0]}/cog2ko_recognizer.tsv'):
if not os.path.isfile(cog2ko_tsv):
generate_cog2ko_tsv(resources_directory, cog2ko_tsv)
cog2ko_df = pd.read_csv(cog2ko_tsv, sep='\t', names=['DB ID', 'KO'])
return pd.merge(cogblast, cog2ko_df, on='DB ID', how='left')
def write_table(table, output, out_format='excel', header=True):
if out_format == 'excel':
table.to_excel(f'{output}.xlsx', index=False, header=header)
elif out_format == 'tsv':
table.to_csv(f'{output}.tsv', index=False, sep='\t', header=header)
def multi_sheet_excel(writer, data, sheet_name='Sheet', max_lines=1000000, index=False):
if len(data) < max_lines:
data.to_excel(writer, sheet_name=sheet_name, index=index)
else:
j = 1
for i in range(0, len(data), max_lines):
data.iloc[i:(i + max_lines)].to_excel(writer, sheet_name=f'{sheet_name} ({j})', index=index)
j += 1
return writer
def create_krona_plot(tsv, output=None, print_command=False):
if output is None:
output = tsv.replace('.tsv', '.html')
run_command(f'ktImportText {tsv} -o {output}', print_command=print_command)
def write_cog_categories(data, output_basename):
# COG categories quantification
data = data.groupby(
['General functional category', 'Functional category', 'product_name', 'DB ID']
).size().reset_index().rename(columns={0: 'count'})
data[['count'] + data.columns.tolist()[:-1]].to_csv(
f'{output_basename}_quantification.tsv', sep='\t', index=False, header=None)
create_krona_plot(f'{output_basename}_quantification.tsv', f'{output_basename}_quantification.html')
def count_on_file(expression, file, compressed=False):
return int(check_output(f"{'zgrep' if compressed else 'grep'} -c '{expression}' {file}", shell=True))
def parse_fasta_on_memory(file):
lines = [line.rstrip('\n') for line in open(file)]
i = 0
result = {}
while i < len(lines):
if lines[i].startswith('>'):
name = lines[i][1:].split()[0]
result[name] = ''
i += 1
while i < len(lines) and not lines[i].startswith('>'):
result[name] += lines[i]
i += 1
return pd.DataFrame.from_dict(result, orient='index', columns=['sequence'])
def write_fasta(data, output, protein_id_col):
data[protein_id_col] = data[protein_id_col].apply(lambda x: f'>{x}')
data.to_csv(output, sep='\n', header=False, index=False)
def split_fasta_by_taxid(file, tax_file, protein_id_col, tax_col, output):
fastas = parse_fasta_on_memory(file)
fastas.reset_index(inplace=True)
tax_file = tax_file.reset_index().groupby(protein_id_col)[tax_col].first()
tax_file = tax_file.reset_index()
fastas = pd.merge(fastas, tax_file[[protein_id_col, tax_col]], left_on='index', right_on=protein_id_col, how='left')
cols = fastas.columns.tolist()
for col in [protein_id_col, 'index']:
cols.remove(col)
fastas = fastas.groupby(protein_id_col)[cols].first()
for taxid in tqdm(set(tax_file[tax_col].tolist()), desc=f'Splitting sequences by taxa', ascii=' >='):
write_fasta(
fastas[fastas[tax_col] == taxid].reset_index()[[protein_id_col, 'sequence']],
f'{output}/tmp/{taxid}.fasta', protein_id_col)
def check_tax_databases(smp_directory, db_directory, db_prefix, taxids, hmm_pgap):
taxids_lacking_db = []
taxids_with_db = []
for taxid in set(taxids):
if not is_db_good(f'{db_directory}/{db_prefix}_{taxid}'):
taxids_lacking_db.append(taxid)
else:
taxids_with_db.append(taxid)
create_tax_db(smp_directory, db_directory, db_prefix, taxids_lacking_db, hmm_pgap)
return taxids_with_db + taxids_lacking_db
def get_members_df(resources_directory):
if os.path.isfile(f'{resources_directory}/members_df.tsv'):
return pd.read_csv(f'{resources_directory}/members_df.tsv', sep='\t', index_col=0)
members = pd.read_csv(f'{resources_directory}/NOG.members.tsv', sep='\t', header=None)
members = members[members[1].str.startswith('COG')]
members[5] = members[5].apply(lambda x: [name.split('.')[0] for name in x.split(',')])
members_dict = {}
for i in tqdm(range(len(members)), desc='Organizing COGs corresponding to each tax ID', ascii=' >='):
for taxid in members.iloc[i, 5]:
if taxid in members_dict.keys():
members_dict[taxid] += f',{members.iloc[i, 1]}'
else:
members_dict[taxid] = members.iloc[i, 1]
members_df = pd.DataFrame.from_dict(members_dict, orient='index')
members_df.columns = ['cogs']
members_df.to_csv(f'{resources_directory}/members_df.tsv', sep='\t')
return members_df
def check_cog_tax_database(smp_directory, db_directory):
smps = glob(f'{smp_directory}/COG*.smp')
for smp in tqdm(smps, desc=f'Checking split COG database for [{len(smps)}] COGs.', ascii=' >='):
name = smp.split('/')[-1].split('.')[0]
with open(f'{smp_directory}/{name}.pn', 'w') as f:
f.write(smp)
if not is_db_good(f'{db_directory}/{name}', print_warning=False):
pn2database(f'{smp_directory}/{name}.pn', db_directory)
def cog_taxonomic_workflow(
output, resources_directory, threads, tax_file, tax_col, members_df, max_target_seqs=1, evalue=1e-5):
check_cog_tax_database(f'{resources_directory}/smps', f'{resources_directory}/dbs') # for proteins with no taxonomy
members_df.index = members_df.index.astype(str)
members_taxids = members_df.index.tolist()
db_report = pd.DataFrame(columns=['qseqid', 'sseqid', 'Superfamilies', 'Sites', 'Motifs'])
for taxid in set(tax_file[tax_col].tolist()):
# Run RPS-BLAST
if taxid not in members_taxids:
with Pool(processes=threads) as p:
p.starmap(run_rpsblast, [(
f'{output}/tmp/tmp_{taxid}_{i}.fasta', f'{output}/asn/COG_{taxid}_{i}_aligned.asn',
f'{resources_directory}/dbs/COG', '1', max_target_seqs, evalue, 11, False) for i in range(threads)
if os.path.isfile(f'{output}/tmp/tmp_{taxid}_{i}.fasta')])
else:
with Pool(processes=threads) as p:
p.starmap(run_rpsblast, [(
f'{output}/tmp/tmp_{taxid}_{i}.fasta', f'{output}/asn/COG_{taxid}_{i}_aligned.asn',
' '.join([f'{resources_directory}/{cog}' for cog in members_df.loc[taxid]['cogs']]), '1',
max_target_seqs, evalue) for i in range(threads)
if os.path.isfile(f'{output}/tmp/tmp_{taxid}_{i}.fasta')])
# Convert ASN-11 to TAB-6
with Pool(processes=threads) as p:
p.starmap(run_blast_formatter, [(
f'{output}/asn/COG_{taxid}_{i}_aligned.asn',
f'{output}/blast/COG_{taxid}_{i}_aligned.blast', '6', False) for i in range(threads)
if os.path.isfile(f'{output}/asn/COG_{taxid}_{i}_aligned.asn')])
# Convert ASN to RPSBPROC
with Pool(processes=threads) as p:
p.starmap(run_rpsbproc, [(
f'{output}/asn/COG_{taxid}_{i}_aligned.asn', resources_directory, evalue, False) for i in range(threads)
if os.path.isfile(f'{output}/asn/COG_{taxid}_{i}_aligned.asn')])
for i in range(threads):
if os.path.isfile(f'{output}/rpsbproc/COG_{taxid}_{i}_aligned.rpsbproc'):
rpsbproc_report = get_rpsbproc_info(f'{output}/rpsbproc/COG_{taxid}_{i}_aligned.rpsbproc')
if len(rpsbproc_report) > 0:
db_report = pd.concat([db_report, rpsbproc_report])
db_report.to_csv(f'{output}/rpsbproc/COG_report.tsv', sep='\t')
def list_smps(smp_directory, smps_prefixes):
if type(smps_prefixes) == str:
return glob(f'{smp_directory}/{smps_prefixes}*.smp')
smps = []
for prefix in smps_prefixes:
smps += glob(f'{smp_directory}/{prefix}*.smp')
return smps
def validate_regular_database(smp_directory, db_directory, db_prefix, smps_prefix):
if not is_db_good(f'{db_directory}/{db_prefix}'):
print(f'Some part of {db_prefix} was not valid! Will rebuild!')
if not os.path.isfile(f'{smp_directory}/{db_prefix}.pn'):
print(f'No {smp_directory}/{db_prefix}.pn file found! Will create one!')
smp_list = [smp_filename.split('/')[-1] for smp_filename in list_smps(smp_directory, smps_prefix)]
with open(f'{smp_directory}/{db_prefix}.pn', 'w') as f:
f.write('\n'.join(smp_list))
pn2database(f'{smp_directory}/{db_prefix}.pn', db_directory)
else:
print(f'A valid {db_prefix} split database was found!')
def validate_prebuilt_database(db_directory, db_prefix):
with open(f'{db_directory}/{db_prefix}.pal') as f:
lines = f.readlines()
for line in lines:
if line.startswith('DBLIST'):
dbs = line.split('DBLIST ')[-1][1:-3].split('" "') # DBLIST "Prk.00" "Prk.01" -> ['Prk.00', 'Prk.01']
for db in dbs:
if not is_db_good(f'{db_directory}/{db}'):
exit(f'Some part of prebuilt {db_prefix} was not valid! Exiting...')
return True
return False
def load_relational_tables(resources_directory, tax_file=None):
timed_message('Loading relational tables')
cddid = parse_cddid(f'{resources_directory}/cddid_all.tbl')
cddid['CDD ID'] = cddid['CDD ID'].apply(lambda x: f'CDD:{x}')
hmm_pgap = pd.read_csv(f'{resources_directory}/hmm_PGAP.tsv', sep='\t', usecols=[1, 10, 12, 14, 15])
hmm_pgap['source_identifier'] = [ide.split('.')[0] for ide in hmm_pgap['source_identifier']]
hmm_pgap['source_identifier'] = hmm_pgap['source_identifier'].str.replace('PF', 'pfam')
smps = [filename.split('/')[-1].rstrip('.smp') for filename in glob(f'{resources_directory}/smps/*.smp')]
hmm_pgap = hmm_pgap[hmm_pgap['source_identifier'].isin(smps)]
hmm_pgap['taxonomic_range'] = hmm_pgap['taxonomic_range'].fillna(0.0).apply(
lambda x: str(int(x)) if type(x) == float else x)
fun = pd.read_csv(f'{sys.path[0]}/fun.tsv', sep='\t')
if tax_file is None:
return cddid, hmm_pgap, fun, None, None
taxonomy_df = pd.read_csv(f'{resources_directory}/taxonomy.tsv', sep='\t', index_col='taxid',
dtype={'taxid': str, 'name': str, 'rank': str, 'parent_taxid': str})
taxonomy_df['parent_taxid'] = taxonomy_df['parent_taxid'].fillna('0').apply(lambda x: x.split('.')[0])
members_df = get_members_df(resources_directory)
members_df['cogs'] = members_df['cogs'].apply(lambda x: set(x.split(',')))
return cddid, hmm_pgap, fun, taxonomy_df, members_df
def replace_spaces_with_underscores(file, tmp_dir):
timed_message('Replacing spaces with underscores')
run_pipe_command(f"sed -e 's/ /_/g' {file} > {tmp_dir}/tmp.fasta")
return f'{tmp_dir}/tmp.fasta'
def split_fasta_by_threads(file, output_basename, threads):
timed_message(f'Splitting {file} into {threads} parts')
fasta = parse_fasta_on_memory(file)
keys = list(split(fasta.index, threads))
for i in range(threads):
with open(f'{output_basename}_{i}.fasta', 'w') as f:
for key in keys[i]:
f.write(f'>{key}\n{fasta.loc[key, "sequence"]}\n')
timed_message(f'Finished splitting {file} into {threads} parts')
def taxids_of_interest(tax_file, protein_id_col, tax_col, tax_df):
tax_file = pd.read_csv(tax_file, sep='\t', index_col=protein_id_col, low_memory=False)
tax_file[tax_col] = tax_file[tax_col].fillna(0.0).astype(int).astype(str)
lineages, all_taxids = get_lineages_multiprocessing(set(tax_file[tax_col].tolist()), tax_df)
return tax_file, lineages, all_taxids
def get_hmm_pgap_taxids(all_taxids, db_prefix, hmm_pgap):
hmm_pgap = hmm_pgap[hmm_pgap['source_identifier'].str.startswith(db_prefix)]
hmm_ids = set(hmm_pgap['taxonomic_range'])
all_taxids_in_hmm_pgap = [tid for tid in all_taxids if
tid in hmm_ids] # each of these parents should have a database if it is possible to have it
return all_taxids_in_hmm_pgap
def add_sequences(file, report):
fasta = parse_fasta_on_memory(file)
return pd.merge(report, fasta, left_on='qseqid', right_index=True, how='left')
def run_rpsbproc(asn_report, resources_directory, evalue, report_runtime=True):
run_pipe_command(
f'rpsbproc -i {asn_report} -o {asn_report.replace("asn", "rpsbproc")} -d {resources_directory} -e {evalue} '
f'-m rep -f -t both 2>verbose.log', report_runtime=report_runtime)
def parse_rpsbproc_section(handler, line, section_name, i):
data = []
if line.startswith(section_name):
line = next(handler)
while not line.startswith(f'END{section_name}'):
data.append(line.rstrip('\n').split('\t')[i])
line = next(handler)
line = next(handler)
return list(set(data)), line
def parse_rpsbproc(file):
file = open(file)
result = []
try:
line = [next(file) for i in range(3)][-1]
except StopIteration:
return result
while line.startswith('#'): # skip first section
line = next(file)
line = next(file, None)
if line is None:
return result
while not line.startswith('ENDDATA'):
line = next(file)
while not line.startswith('ENDSESSION'):
query = line.rstrip('\n').split('\t')[4]
domains, superfamilies, sites, motifs = [], [], [], []
line = next(file)
while not line.startswith('ENDQUERY'):
domains, line = parse_rpsbproc_section(file, line, 'DOMAINS', 3)
superfamilies, line = parse_rpsbproc_section(file, line, 'SUPERFAMILIES', 3)
sites, line = parse_rpsbproc_section(file, line, 'SITES', 7)
motifs, line = parse_rpsbproc_section(file, line, 'MOTIFS', 5)
result.append([query, domains, superfamilies, sites, motifs])
line = next(file)
line = next(file)
result = pd.DataFrame(result, columns=['qseqid', 'sseqid', 'Superfamilies', 'Sites', 'Motifs'])
return result
def run_blast_formatter(archive, output, outfmt='6', report_runtime=True):
run_pipe_command(
f'blast_formatter -archive {archive} -outfmt {outfmt} -out {output} 2>verbose.log',
report_runtime=report_runtime)
def get_rpsbproc_info(rpsbproc_report):
if not os.path.isfile(rpsbproc_report):
return pd.DataFrame(columns=['qseqid', 'sseqid', 'Superfamilies', 'Sites', 'Motifs'])
rpsbproc_report = parse_rpsbproc(rpsbproc_report)
if len(rpsbproc_report) > 0:
for col in rpsbproc_report.columns.tolist()[2:]: # exclude 'qseqid' and 'sseqid'
rpsbproc_report[col] = rpsbproc_report[col].apply(','.join)
rpsbproc_report = expand_by_list_column(rpsbproc_report, column='sseqid')
rpsbproc_report.index = rpsbproc_report.index.astype(str)
rpsbproc_report.sseqid = rpsbproc_report.sseqid.apply(lambda x: f'CDD:{x}')
return rpsbproc_report
else:
return pd.DataFrame(columns=['qseqid', 'sseqid', 'Superfamilies', 'Sites', 'Motifs'])
def get_db_ec(description, suffix=''):
m = re.compile(r"EC:([1-6-]\.[\d-]+\.[\d-]+\.[\d-]+)" + re.escape(suffix)).search(description)
if m is None:
return np.nan
return m.group(1)
def custom_database_workflow(output, databases, threads=15, max_target_seqs=1, evalue=1e-3):
for db in databases:
if not is_db_good(db):
exit('Some inputted custom database was not valid!')
timed_message('Running annotation with RPS-BLAST and inputted database(s) as reference.')
with Pool(processes=threads) as p:
p.starmap(run_rpsblast, [(
f'{output}/tmp/tmp_{i}.fasta', f'{output}/blast/{i}_aligned.blast', ' '.join(databases), '1',
max_target_seqs, evalue, 6) for i in range(threads)])
result = pd.DataFrame()
for i in range(threads):
if os.path.isfile(f'{output}/blast/{i}_aligned.blast'):
result = pd.concat([result, parse_blast(f'{output}/blast/{i}_aligned.blast')])
result.to_csv(f'{output}/reCOGnizer_results.tsv', sep='\t', index=False)
result.to_excel(f'{output}/reCOGnizer_results.xlsx', index=False)
def taxonomic_workflow(
output, resources_directory, threads, lineages, all_taxids, db_prefixes, base, hmm_pgap,
max_target_seqs=1, evalue=1e-5):
all_taxids += ['131567', '0'] # cellular organisms and no taxonomy
hmm_pgap_taxids = get_hmm_pgap_taxids(all_taxids, db_prefixes[base][1], hmm_pgap)
taxids_with_db = check_tax_databases(
f'{resources_directory}/smps', f'{resources_directory}/dbs', db_prefixes[base][0], hmm_pgap_taxids,
hmm_pgap)
# for proteins with no taxonomy
validate_regular_database(
f'{resources_directory}/smps', f'{resources_directory}/dbs', db_prefixes[base][0], db_prefixes[base][1])
dbs = {taxid: [
f'{resources_directory}/dbs/{db_prefixes[base][0]}_{parent_taxid}' for parent_taxid in
lineages[taxid] + ['0'] if parent_taxid in taxids_with_db] for taxid in lineages.keys()}
dbs = {**dbs,
**{'0': [f'{resources_directory}/dbs/{db_prefixes[base][0]}']}} # no taxonomy is annotated with all
db_report = pd.DataFrame(columns=['qseqid', 'sseqid', 'Superfamilies', 'Sites', 'Motifs'])
for taxid in list(lineages.keys()) + ['0']:
if os.path.isfile(f'{output}/tmp/{taxid}.fasta'):
# Run RPS-BLAST
with Pool(processes=threads) as p:
p.starmap(run_rpsblast, [(
f'{output}/tmp/tmp_{taxid}_{i}.fasta', f'{output}/asn/{base}_{taxid}_{i}_aligned.asn',
' '.join(dbs[taxid]), '1', max_target_seqs, evalue, 11, False) for i in range(threads)
if os.path.isfile(f'{output}/tmp/tmp_{taxid}_{i}.fasta')])
# Convert ASN-11 to TAB-6
with Pool(processes=threads) as p:
p.starmap(run_blast_formatter, [(
f'{output}/asn/{base}_{taxid}_{i}_aligned.asn',
f'{output}/blast/{base}_{taxid}_{i}_aligned.blast', '6', False) for i in range(threads)
if os.path.isfile(f'{output}/asn/{base}_{taxid}_{i}_aligned.asn')])
# Convert ASN to RPSBPROC
with Pool(processes=threads) as p:
p.starmap(run_rpsbproc, [(
f'{output}/asn/{base}_{taxid}_{i}_aligned.asn', resources_directory, evalue, False) for i in range(threads)
if os.path.isfile(f'{output}/asn/{base}_{taxid}_{i}_aligned.asn')])
for i in range(threads):
if os.path.isfile(f'{output}/rpsbproc/{base}_{taxid}_{i}_aligned.rpsbproc'):
rpsbproc_report = get_rpsbproc_info(f'{output}/rpsbproc/{base}_{taxid}_{i}_aligned.rpsbproc')
if len(rpsbproc_report) > 0:
db_report = pd.concat([db_report, rpsbproc_report])
db_report.to_csv(f'{output}/rpsbproc/{base}_report.tsv', sep='\t')
def multiprocess_workflow(output, resources_directory, threads, db_prefixes, base, max_target_seqs=5, evalue=0.01):
validate_regular_database(
f'{resources_directory}/smps', f'{resources_directory}/dbs', db_prefixes[base][0],
db_prefixes[base][1])
# Run RPS-BLAST
with Pool(processes=threads) as p:
p.starmap(run_rpsblast, [(
f'{output}/tmp/tmp_{i}.fasta', f'{output}/asn/{base}_{i}_aligned.asn',
f'{resources_directory}/dbs/{db_prefixes[base][0]}', '1',
max_target_seqs, evalue) for i in range(threads)])
# Convert ASN-11 to TAB-6
with Pool(processes=threads) as p:
p.starmap(run_blast_formatter, [(
f'{output}/asn/{base}_{i}_aligned.asn',
f'{output}/blast/{base}_{i}_aligned.blast') for i in range(threads)
if os.path.isfile(f'{output}/asn/{base}_{i}_aligned.asn')])
run_pipe_command(f'cat {output}/blast/{base}_*_aligned.blast', file=f'{output}/blast/{base}_aligned.blast')
# Convert ASN to RPSBPROC
with Pool(processes=threads) as p:
p.starmap(run_rpsbproc, [(
f'{output}/asn/{base}_{i}_aligned.asn', resources_directory, evalue) for i in range(threads)
if os.path.isfile(f'{output}/asn/{base}_{i}_aligned.asn')])
db_report = pd.DataFrame(columns=['qseqid', 'sseqid', 'Superfamilies', 'Sites', 'Motifs'])
for i in range(threads):
if os.path.isfile(f'{output}/rpsbproc/{base}_{i}_aligned.rpsbproc'):
rpsbproc_report = get_rpsbproc_info(f'{output}/rpsbproc/{base}_{i}_aligned.rpsbproc')
if len(rpsbproc_report) > 0:
db_report = pd.concat([db_report, rpsbproc_report])
db_report.to_csv(f'{output}/rpsbproc/{base}_report.tsv', sep='\t')
def complete_report(report, db, resources_directory, output, hmm_pgap, fun):
cols = ['qseqid', 'DB ID', 'product_name', 'DB description', 'ec_number', 'KO', 'CDD ID', 'taxonomic_range_name',
'taxonomic_range', 'Superfamilies', 'Sites', 'Motifs', 'pident', 'length', 'mismatch', 'gapopen',
'qstart', 'qend', 'sstart', 'send', 'evalue', 'bitscore']
if db in ['NCBI_Curated', 'Pfam', 'PRK', 'TIGR']:
report = pd.merge(report, hmm_pgap, left_on='DB ID', right_on='source_identifier', how='left')
if db == 'CDD':
report['ec_number'] = report['DB description'].apply(get_db_ec, suffix=")")
elif db == 'SMART':
smart_table = pd.read_csv(
f'{resources_directory}/descriptions.pl', sep='\t', skiprows=2, names=['DB ID', 'product_name'],
usecols=[1, 2])
smart_table['DB ID'] = smart_table['DB ID'].str.replace('SM', 'smart')
report = pd.merge(report, smart_table, on='DB ID', how='left')
report['ec_number'] = report['DB description'].apply(get_db_ec)
elif db == 'KOG':
cols = [cols[0]] + ['General functional category', 'Functional category'] + cols[1:]
kog_table = parse_kog(f'{resources_directory}/kog')
kog_table = pd.merge(kog_table, fun, on='Functional category (letter)', how='left')
report = pd.merge(report, kog_table, on='DB ID', how='left')
if len(report) > 0:
write_cog_categories(report, f'{output}/KOG')
elif db == 'COG':
cols = [cols[0]] + ['General functional category', 'Functional category'] + cols[1:]
cog_table = parse_whog(f'{resources_directory}/cog-20.def.tab')
cog_table = pd.merge(cog_table, fun, on='Functional category (letter)', how='left')
report = pd.merge(report, cog_table, on='DB ID', how='left')
# cog2ec
report = cog2ec(report, resources_directory, cog2ec_tsv=f'{sys.path[0]}/cog2ec_recognizer.tsv')
# cog2ko
report = cog2ko(report, resources_directory, cog2ko_tsv=f'{sys.path[0]}/cog2ko_recognizer.tsv')
if len(report) > 0:
write_cog_categories(report, f'{output}/COG')
else:
return 'Invalid database for retrieving further information!'
cols = [col for col in cols if col in report.columns]
return report[cols].rename(columns={'product_name': 'Protein description', 'ec_number': 'EC number'})
def organize_results(
file, output, resources_directory, databases, hmm_pgap, cddid, fun, no_output_sequences=False,
include_rpsbproc_cols=False):
timed_message("Organizing annotation results")
i = 1
xlsx_report = pd.ExcelWriter(f'{output}/reCOGnizer_results.xlsx', engine='xlsxwriter')
all_reports = pd.DataFrame(columns=['qseqid',
'DB ID']) # intialize with these columns so if it has no rows, at least it has the columns to groupby
for db in databases:
run_pipe_command(f'cat {output}/blast/{db}_*_aligned.blast', file=f'{output}/blast/{db}_aligned.blast')
print(f'[{i}/{len(databases)}] Handling {db} annotation')
blast_res = parse_blast(f'{output}/blast/{db}_aligned.blast')
if db != 'KOG': # rpsbproc doesn't work with KOG
rpsbproc_res = pd.read_csv(f'{output}/rpsbproc/{db}_report.tsv', sep='\t', index_col=0)