forked from matyasbohacek/spoter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
283 lines (214 loc) · 11.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os
import argparse
import random
import logging
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from torchvision import transforms
from torch.utils.data import DataLoader
from pathlib import Path
from utils import __balance_val_split, __split_of_train_sequence, __log_class_statistics
from datasets.czech_slr_dataset import CzechSLRDataset
from spoter.spoter_model import SPOTER
from spoter.utils import train_epoch, evaluate
from spoter.gaussian_noise import GaussianNoise
def get_default_args():
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument("--experiment_name", type=str, default="lsa_64_spoter",
help="Name of the experiment after which the logs and plots will be named")
parser.add_argument("--num_classes", type=int, default=64, help="Number of classes to be recognized by the model")
parser.add_argument("--hidden_dim", type=int, default=108,
help="Hidden dimension of the underlying Transformer model")
parser.add_argument("--seed", type=int, default=379,
help="Seed with which to initialize all the random components of the training")
# Data
parser.add_argument("--training_set_path", type=str, default="", help="Path to the training dataset CSV file")
parser.add_argument("--testing_set_path", type=str, default="", help="Path to the testing dataset CSV file")
parser.add_argument("--experimental_train_split", type=float, default=None,
help="Determines how big a portion of the training set should be employed (intended for the "
"gradually enlarging training set experiment from the paper)")
parser.add_argument("--validation_set", type=str, choices=["from-file", "split-from-train", "none"],
default="from-file", help="Type of validation set construction. See README for further rederence")
parser.add_argument("--validation_set_size", type=float,
help="Proportion of the training set to be split as validation set, if 'validation_size' is set"
" to 'split-from-train'")
parser.add_argument("--validation_set_path", type=str, default="", help="Path to the validation dataset CSV file")
# Training hyperparameters
parser.add_argument("--epochs", type=int, default=100, help="Number of epochs to train the model for")
parser.add_argument("--lr", type=float, default=0.001, help="Learning rate for the model training")
parser.add_argument("--log_freq", type=int, default=1,
help="Log frequency (frequency of printing all the training info)")
# Checkpointing
parser.add_argument("--save_checkpoints", type=bool, default=True,
help="Determines whether to save weights checkpoints")
# Scheduler
parser.add_argument("--scheduler_factor", type=int, default=0.1, help="Factor for the ReduceLROnPlateau scheduler")
parser.add_argument("--scheduler_patience", type=int, default=5,
help="Patience for the ReduceLROnPlateau scheduler")
# Gaussian noise normalization
parser.add_argument("--gaussian_mean", type=int, default=0, help="Mean parameter for Gaussian noise layer")
parser.add_argument("--gaussian_std", type=int, default=0.001,
help="Standard deviation parameter for Gaussian noise layer")
# Visualization
parser.add_argument("--plot_stats", type=bool, default=True,
help="Determines whether continuous statistics should be plotted at the end")
parser.add_argument("--plot_lr", type=bool, default=True,
help="Determines whether the LR should be plotted at the end")
return parser
def train(args):
# MARK: TRAINING PREPARATION AND MODULES
# Initialize all the random seeds
random.seed(args.seed)
np.random.seed(args.seed)
os.environ["PYTHONHASHSEED"] = str(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
g = torch.Generator()
g.manual_seed(args.seed)
# Set the output format to print into the console and save into LOG file
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.FileHandler(args.experiment_name + "_" + str(args.experimental_train_split).replace(".", "") + ".log")
]
)
# Set device to CUDA only if applicable
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
# Construct the model
slrt_model = SPOTER(num_classes=args.num_classes, hidden_dim=args.hidden_dim)
slrt_model.train(True)
slrt_model.to(device)
print(slrt_model)
# This should print 'cuda' if it's available
print(device)
# Construct the other modules
cel_criterion = nn.CrossEntropyLoss()
sgd_optimizer = optim.SGD(slrt_model.parameters(), lr=args.lr)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(sgd_optimizer, factor=args.scheduler_factor, patience=args.scheduler_patience)
# Ensure that the path for checkpointing and for images both exist
Path("out-checkpoints/" + args.experiment_name + "/").mkdir(parents=True, exist_ok=True)
Path("out-img/").mkdir(parents=True, exist_ok=True)
# MARK: DATA
# Training set
transform = transforms.Compose([GaussianNoise(args.gaussian_mean, args.gaussian_std)])
train_set = CzechSLRDataset(args.training_set_path, transform=transform, augmentations=True)
print('train set')
print(train_set)
print("LEN: ", len(train_set))
# Validation set
if args.validation_set == "from-file":
val_set = CzechSLRDataset(args.validation_set_path)
val_loader = DataLoader(val_set, shuffle=True, generator=g)
elif args.validation_set == "split-from-train":
train_set, val_set = __balance_val_split(train_set, 0.2)
val_set.transform = None
val_set.augmentations = False
val_loader = DataLoader(val_set, shuffle=True, generator=g)
else:
val_loader = None
# Testing set
if args.testing_set_path:
eval_set = CzechSLRDataset(args.testing_set_path)
eval_loader = DataLoader(eval_set, shuffle=True, generator=g)
else:
eval_loader = None
# Final training set refinements
if args.experimental_train_split:
train_set = __split_of_train_sequence(train_set, args.experimental_train_split)
train_loader = DataLoader(train_set, shuffle=True, generator=g)
# MARK: TRAINING
train_acc, val_acc = 0, 0
losses, train_accs, val_accs = [], [], []
lr_progress = []
top_train_acc, top_val_acc = 0, 0
checkpoint_index = 0
if args.experimental_train_split:
print("Starting " + args.experiment_name + "_" + str(args.experimental_train_split).replace(".", "") + "...\n\n")
logging.info("Starting " + args.experiment_name + "_" + str(args.experimental_train_split).replace(".", "") + "...\n\n")
else:
print("Starting " + args.experiment_name + "...\n\n")
logging.info("Starting " + args.experiment_name + "...\n\n")
for epoch in range(args.epochs):
train_loss, _, _, train_acc = train_epoch(slrt_model, train_loader, cel_criterion, sgd_optimizer, device)
losses.append(train_loss.item() / len(train_loader))
train_accs.append(train_acc)
if val_loader:
slrt_model.train(False)
_, _, val_acc = evaluate(slrt_model, val_loader, device)
slrt_model.train(True)
val_accs.append(val_acc)
# Save checkpoints if they are best in the current subset
if args.save_checkpoints:
if train_acc > top_train_acc:
top_train_acc = train_acc
torch.save(slrt_model, "out-checkpoints/" + args.experiment_name + "/checkpoint_t_" + str(checkpoint_index) + ".pth")
if val_acc > top_val_acc:
top_val_acc = val_acc
torch.save(slrt_model, "out-checkpoints/" + args.experiment_name + "/checkpoint_v_" + str(checkpoint_index) + ".pth")
if epoch % args.log_freq == 0:
print("[" + str(epoch + 1) + "] TRAIN loss: " + str(train_loss.item() / len(train_loader)) + " acc: " + str(train_acc))
logging.info("[" + str(epoch + 1) + "] TRAIN loss: " + str(train_loss.item() / len(train_loader)) + " acc: " + str(train_acc))
if val_loader:
print("[" + str(epoch + 1) + "] VALIDATION acc: " + str(val_acc))
logging.info("[" + str(epoch + 1) + "] VALIDATION acc: " + str(val_acc))
print("")
logging.info("")
# Reset the top accuracies on static subsets
if epoch % 10 == 0:
top_train_acc, top_val_acc = 0, 0
checkpoint_index += 1
lr_progress.append(sgd_optimizer.param_groups[0]["lr"])
# MARK: TESTING
print("\nTesting checkpointed models starting...\n")
logging.info("\nTesting checkpointed models starting...\n")
top_result, top_result_name = 0, ""
if eval_loader:
for i in range(checkpoint_index):
for checkpoint_id in ["t", "v"]:
# tested_model = VisionTransformer(dim=2, mlp_dim=108, num_classes=100, depth=12, heads=8)
tested_model = torch.load("out-checkpoints/" + args.experiment_name + "/checkpoint_" + checkpoint_id + "_" + str(i) + ".pth")
tested_model.train(False)
_, _, eval_acc = evaluate(tested_model, eval_loader, device, print_stats=True)
if eval_acc > top_result:
top_result = eval_acc
top_result_name = args.experiment_name + "/checkpoint_" + checkpoint_id + "_" + str(i)
print("checkpoint_" + checkpoint_id + "_" + str(i) + " -> " + str(eval_acc))
logging.info("checkpoint_" + checkpoint_id + "_" + str(i) + " -> " + str(eval_acc))
print("\nThe top result was recorded at " + str(top_result) + " testing accuracy. The best checkpoint is " + top_result_name + ".")
logging.info("\nThe top result was recorded at " + str(top_result) + " testing accuracy. The best checkpoint is " + top_result_name + ".")
# PLOT 0: Performance (loss, accuracies) chart plotting
if args.plot_stats:
fig, ax = plt.subplots()
ax.plot(range(1, len(losses) + 1), losses, c="#D64436", label="Training loss")
ax.plot(range(1, len(train_accs) + 1), train_accs, c="#00B09B", label="Training accuracy")
if val_loader:
ax.plot(range(1, len(val_accs) + 1), val_accs, c="#E0A938", label="Validation accuracy")
ax.xaxis.set_major_locator(ticker.MaxNLocator(integer=True))
ax.set(xlabel="Epoch", ylabel="Accuracy / Loss", title="")
plt.legend(loc="upper center", bbox_to_anchor=(0.5, 1.05), ncol=4, fancybox=True, shadow=True, fontsize="xx-small")
ax.grid()
fig.savefig("out-img/" + args.experiment_name + "_loss.png")
# PLOT 1: Learning rate progress
if args.plot_lr:
fig1, ax1 = plt.subplots()
ax1.plot(range(1, len(lr_progress) + 1), lr_progress, label="LR")
ax1.set(xlabel="Epoch", ylabel="LR", title="")
ax1.grid()
fig1.savefig("out-img/" + args.experiment_name + "_lr.png")
print("\nAny desired statistics have been plotted.\nThe experiment is finished.")
logging.info("\nAny desired statistics have been plotted.\nThe experiment is finished.")
if __name__ == '__main__':
parser = argparse.ArgumentParser("", parents=[get_default_args()], add_help=False)
args = parser.parse_args()
print('args')
print(args)
train(args)