forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_parentheses.py
77 lines (59 loc) · 2.33 KB
/
generate_parentheses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"""
author: Aayush Soni
Given n pairs of parentheses, write a function to generate all
combinations of well-formed parentheses.
Input: n = 2
Output: ["(())","()()"]
Leetcode link: https://leetcode.com/problems/generate-parentheses/description/
"""
def backtrack(
partial: str, open_count: int, close_count: int, n: int, result: list[str]
) -> None:
"""
Generate valid combinations of balanced parentheses using recursion.
:param partial: A string representing the current combination.
:param open_count: An integer representing the count of open parentheses.
:param close_count: An integer representing the count of close parentheses.
:param n: An integer representing the total number of pairs.
:param result: A list to store valid combinations.
:return: None
This function uses recursion to explore all possible combinations,
ensuring that at each step, the parentheses remain balanced.
Example:
>>> result = []
>>> backtrack("", 0, 0, 2, result)
>>> result
['(())', '()()']
"""
if len(partial) == 2 * n:
# When the combination is complete, add it to the result.
result.append(partial)
return
if open_count < n:
# If we can add an open parenthesis, do so, and recurse.
backtrack(partial + "(", open_count + 1, close_count, n, result)
if close_count < open_count:
# If we can add a close parenthesis (it won't make the combination invalid),
# do so, and recurse.
backtrack(partial + ")", open_count, close_count + 1, n, result)
def generate_parenthesis(n: int) -> list[str]:
"""
Generate valid combinations of balanced parentheses for a given n.
:param n: An integer representing the number of pairs of parentheses.
:return: A list of strings with valid combinations.
This function uses a recursive approach to generate the combinations.
Time Complexity: O(2^(2n)) - In the worst case, we have 2^(2n) combinations.
Space Complexity: O(n) - where 'n' is the number of pairs.
Example 1:
>>> generate_parenthesis(3)
['((()))', '(()())', '(())()', '()(())', '()()()']
Example 2:
>>> generate_parenthesis(1)
['()']
"""
result: list[str] = []
backtrack("", 0, 0, n, result)
return result
if __name__ == "__main__":
import doctest
doctest.testmod()