-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtorchvision_seg_ui.py
79 lines (67 loc) · 2.28 KB
/
torchvision_seg_ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import models, transforms
import gradio as gr
import warnings
warnings.filterwarnings("ignore")
# 加载模型
models_dict = {
'DeepLabv3': models.segmentation.deeplabv3_resnet50(pretrained=True).eval(),
'DeepLabv3+': models.segmentation.deeplabv3_resnet101(pretrained=True).eval(),
'FCN-ResNet50': models.segmentation.fcn_resnet50(pretrained=True).eval(),
'FCN-ResNet101': models.segmentation.fcn_resnet101(pretrained=True).eval(),
'LRR': models.segmentation.lraspp_mobilenet_v3_large(pretrained=True).eval(),
}
# 图像预处理
image_transforms = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
# 定义推理函数
def predict_segmentation(image, model_name):
# 图像预处理
image_tensor = image_transforms(image).unsqueeze(0)
# 模型推理
with torch.no_grad():
output = models_dict[model_name](image_tensor)['out'][0]
output_predictions = output.argmax(0)
segmentation = F.interpolate(
output.float().unsqueeze(0),
size=image.size[::-1],
mode='bicubic',
align_corners=False
)[0].argmax(0).numpy()
# 分割图
segmentation_image = np.uint8(segmentation)
segmentation_image = cv2.applyColorMap(segmentation_image, cv2.COLORMAP_JET)
# 融合图
blend_image = cv2.addWeighted(np.array(image), 0.5, segmentation_image, 0.5, 0)
blend_image = cv2.cvtColor(blend_image, cv2.COLOR_BGR2RGB)
return segmentation_image, blend_image
# Gradio 接口
model_list = ['DeepLabv3', 'DeepLabv3+', 'FCN-ResNet50', 'FCN-ResNet101', 'LRR']
inputs = [
gr.inputs.Image(type='pil', label='原始图像'),
gr.inputs.Dropdown(model_list, label='选择模型')
]
outputs = [
gr.outputs.Image(type='pil',label='分割图'),
gr.outputs.Image(type='pil',label='融合图')
]
interface = gr.Interface(
predict_segmentation,
inputs,
outputs,
capture_session=True,
title='torchvision-segmentation-webui',
description='torchvision segmentation webui on gradio'
)
# 启动 Gradio 接口
interface.launch()