-
Notifications
You must be signed in to change notification settings - Fork 4
/
atest_real.py
53 lines (39 loc) · 1.88 KB
/
atest_real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
from Feature import FeatureSpace
from import_lightcurve import LeerLC_MACHO
from PreprocessLC import Preprocess_LC
from alignLC import Align_LC
#Opening the light curve
lc_B = LeerLC_MACHO('lc_58.6272.729.B.mjd')
lc_R = LeerLC_MACHO('lc_58.6272.729.R.mjd')
[data, mjd, error] = lc_B.leerLC()
[data2, mjd2, error2] = lc_R.leerLC()
preproccesed_data = Preprocess_LC(data, mjd, error)
[data, mjd, error] = preproccesed_data.Preprocess()
preproccesed_data = Preprocess_LC(data2, mjd2, error2)
[second_data, mjd2, error2] = preproccesed_data.Preprocess()
if len(data) != len(second_data):
[aligned_data, aligned_second_data, aligned_mjd] = Align_LC(mjd, mjd2,
data,
second_data,
error, error2)
#Calculating the features
a = FeatureSpace(featureList=['PeriodLS', 'Psi_CS', 'Psi_eta'],
automean=[0, 0], StetsonL=[aligned_second_data, aligned_data],
B_R=second_data, Beyond1Std=error,
StetsonJ=[aligned_second_data, aligned_data], MaxSlope=mjd,
LinearTrend=mjd,
Eta_B_R=[aligned_second_data, aligned_data, aligned_mjd],
Eta_e=mjd, Q31B_R=[aligned_second_data, aligned_data],
PeriodLS=mjd, Psi_CS=mjd, CAR_sigma=[mjd, error],
SlottedA=mjd
)
a = a.calculateFeature(data)
print a.result(method='dict')
# nombres = a.result(method='features')
# guardar = np.vstack((nombres,a.result(method='array')))
# # a=np.vstack((previous_data,a))
# np.savetxt('test_real.csv', guardar, delimiter="," ,fmt="%s")
#B_R = second_data, Eta_B_R = second_data, Eta_e = mjd, MaxSlope = mjd,
#PeriodLS = mjd, Q31B_R = second_data, StetsonJ = second_data,
#StetsonL = second_data)