-
Notifications
You must be signed in to change notification settings - Fork 6
/
Feature.py
159 lines (133 loc) · 6.31 KB
/
Feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import sys
import time
import inspect
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import featureFunction
class FeatureSpace:
"""
This Class is a wrapper class, to allow user select the
features based on the available time series vectors (magnitude, time,
error, second magnitude, etc.) or specify a list of features.
__init__ will take in the list of the available data and featureList.
User could only specify the available time series vectors, which will
output all the features that need this data to be calculated.
User could only specify featureList, which will output
all the features in the list.
User could specify a list of the available time series vectors and
featureList, which will output all the features in the List that
use the available data.
Additional parameters are used for individual features.
Format is featurename = [parameters]
usage:
data = np.random.randint(0,10000, 100000000)
# automean is the featurename and [0,0] is the parameter for the feature
a = FeatureSpace(category='all', automean=[0,0])
print a.featureList
a=a.calculateFeature(data)
print a.result(method='array')
print a.result(method='dict')
"""
def __init__(self, Data=None, featureList=None, excludeList = [], **kwargs):
self.featureFunc = []
self.featureList = []
self.featureOrder = []
self.featureList = []
self.sort = False
if Data is not None:
self.Data = Data
if self.Data == 'all':
if featureList == None:
if excludeList == None:
for name, obj in inspect.getmembers(featureFunction):
if inspect.isclass(obj) and name != 'Base' :
# if set(obj().Data).issubset(self.Data):
self.featureOrder.append((inspect.getsourcelines(obj)[-1:])[0])
self.featureList.append(name)
else:
for name, obj in inspect.getmembers(featureFunction):
if inspect.isclass(obj) and name != 'Base' and not name in excludeList:
# if set(obj().Data).issubset(self.Data):
self.featureOrder.append((inspect.getsourcelines(obj)[-1:])[0])
self.featureList.append(name)
else:
for feature in featureList:
for name, obj in inspect.getmembers(featureFunction):
if name != 'Base':
if inspect.isclass(obj) and feature == name:
self.featureList.append(name)
else:
if featureList is None:
for name, obj in inspect.getmembers(featureFunction):
if inspect.isclass(obj) and name != 'Base' and not name in excludeList:
if name in kwargs.keys():
if set(obj(kwargs[name]).Data).issubset(self.Data):
self.featureOrder.append((inspect.getsourcelines(obj)[-1:])[0])
self.featureList.append(name)
else:
if set(obj().Data).issubset(self.Data):
self.featureOrder.append((inspect.getsourcelines(obj)[-1:])[0])
self.featureList.append(name)
else:
print "Warning: the feature", name, "could not be calculated because", obj().Data, "are needed."
else:
for feature in featureList:
for name, obj in inspect.getmembers(featureFunction):
if name != 'Base':
if inspect.isclass(obj) and feature == name:
if set(obj().Data).issubset(self.Data):
self.featureList.append(name)
else:
print "Warning: the feature", name, "could not be calculated because", obj().Data, "are needed."
if self.featureOrder != []:
self.sort = True
self.featureOrder = np.argsort(self.featureOrder)
self.featureList = [self.featureList[i] for i in self.featureOrder]
self.idx = np.argsort(self.featureList)
else:
self.featureList = featureList
m = featureFunction
for item in self.featureList:
if item in kwargs.keys():
try:
a = getattr(m, item)(kwargs[item])
except:
print "error in feature " + item
sys.exit(1)
else:
try:
a = getattr(m, item)()
except:
print " could not find feature " + item
# discuss -- should we exit?
sys.exit(1)
try:
self.featureFunc.append(a.fit)
except:
print "could not initilize " + item
def calculateFeature(self, data):
self._X = np.asarray(data)
self.__result = []
for f in self.featureFunc:
self.__result.append(f(self._X))
return self
def result(self, method='array'):
if method == 'array':
if self.sort == True:
return [np.asarray(self.__result)[i] for i in self.idx]
else:
return np.asarray(self.__result)
elif method == 'dict':
if self.sort == True:
return dict(zip([self.featureList[i] for i in self.idx], [np.asarray(self.__result)[i] for i in self.idx]))
else:
return dict(zip(self.featureList, np.asarray(self.__result)))
elif method == 'features':
if self.sort == True:
return [self.featureList[i] for i in self.idx]
else:
return self.featureList
else:
return self.__result