forked from domluna/memn2n
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbabi_plus_dialog_single.py
executable file
·279 lines (240 loc) · 8.7 KB
/
babi_plus_dialog_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""Example running MemN2N on a single bAbI task.
Download tasks from facebook.ai/babi """
from __future__ import absolute_import
from __future__ import print_function
import random
from argparse import ArgumentParser
from itertools import chain
from six.moves import range, reduce
import logging
import sys
from os import path
import json
from sklearn import metrics
import tensorflow as tf
import numpy as np
from dialog_data_utils import (
vectorize_data_dialog,
get_candidates_list,
load_task,
vectorize_answers
)
from tf_config import configure
from memn2n import MemN2N
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
logger = logging.getLogger(__file__)
def configure_argument_parser():
parser = ArgumentParser(description='train MemN2N on bAbI/bAbI+ dialogs')
parser.add_argument('train_dialogs', help='train dialogs root')
parser.add_argument('test_dialogs', help='test dialogs root')
parser.add_argument(
'--predict_last_turn_only',
default=False,
action='store_true',
help='whether to only test on the last (API) turns'
)
parser.add_argument(
'--ignore_api_calls',
default=False,
action='store_true',
help='whether to ignore API calls while loading data'
)
parser.add_argument(
'--config',
type=str,
default='babi_plus_dialog_single.json',
help='MemN2N config'
)
return parser
parser = configure_argument_parser()
args = parser.parse_args()
CONFIG_FILE = path.join(path.dirname(__file__), args.config)
with open(CONFIG_FILE) as config_in:
CONFIG = json.load(config_in)
configure(CONFIG)
tf.flags.DEFINE_string(
"data_dir",
args.train_dialogs,
"Directory containing bAbI tasks"
)
tf.flags.DEFINE_string(
"data_dir_plus",
args.test_dialogs,
"Directory containing bAbI+ tasks"
)
FLAGS = tf.flags.FLAGS
print('{}:\t{}'.format('data_dir', FLAGS.data_dir))
print('{}:\t{}'.format('data_dir_plus', FLAGS.data_dir_plus))
for key, value in CONFIG.iteritems():
print('{}:\t{}'.format(key, value))
random.seed(FLAGS.random_state)
np.random.seed(FLAGS.random_state)
print("Started Task:", FLAGS.task_id)
# task data
train_babi, dev_babi, test_babi, test_oov_babi = load_task(
FLAGS.data_dir,
FLAGS.task_id,
args.ignore_api_calls
)
train_plus, dev_plus, test_plus, test_oov_plus = load_task(
FLAGS.data_dir_plus,
FLAGS.task_id,
args.ignore_api_calls
)
all_dialogues_babi = train_babi + dev_babi + test_babi + test_oov_babi
all_dialogues_babi_plus = train_plus + dev_plus + test_plus + test_oov_plus
data = []
for dialogue in all_dialogues_babi + all_dialogues_babi_plus:
data += dialogue
# data = reduce(
# lambda x, y: x + y,
# all_dialogues_babi + all_dialogues_babi_plus,
# []
# )
max_story_size = max(map(len, (s for s, _, _ in data)))
mean_story_size = int(np.mean([len(s) for s, _, _ in data]))
sentence_size = max(map(len, chain.from_iterable(s for s, _, _ in data))) + 2
query_size = max(map(len, (q for _, q, _ in data)))
memory_size = min(FLAGS.memory_size, max_story_size)
answer_candidates = get_candidates_list(FLAGS.data_dir)
vocab = reduce(
lambda x, y: x | y,
(set(list(chain.from_iterable(s)) + q + a) for s, q, a in data)
)
vocab |= reduce(
lambda x, y: x | y,
[set(answer.split()) for answer in answer_candidates]
)
vocab = sorted(vocab)
word_idx = {c: i + 1 for i, c in enumerate(vocab)}
answer_idx = {
candidate: i + 1
for i, candidate in enumerate(answer_candidates)
}
vocab_size = len(word_idx) + 1 # +1 for nil word
answer_vocab_size = len(answer_idx) + 1
sentence_size = max(query_size, sentence_size) # for the position
answers_vectorized = vectorize_answers(answer_candidates, word_idx, sentence_size)
print("Longest sentence length", sentence_size)
print("Longest story length", max_story_size)
print("Average story length", mean_story_size)
# in_train_sqa - trainset
# in_train_eval_sqa - trainset for evaluation (may be API calls only)
# # in_test_sqa - testset for evaluation
def train_model(in_model, in_train_sqa, in_train_eval_sqa, in_test_sqa, in_batches):
best_train_accuracy, best_test_accuracy = 0.0, 0.0
for t in range(1, FLAGS.epochs+1):
s_train, q_train, a_train = in_train_sqa
s_train_eval, q_train_eval, a_train_eval = in_train_eval_sqa
s_test, q_test, a_test = in_test_sqa
train_labels = np.argmax(a_train, axis=1)
train_eval_labels = np.argmax(a_train_eval, axis=1)
test_labels = np.argmax(a_test, axis=1)
np.random.shuffle(in_batches)
total_cost = 0.0
for start, end in in_batches:
s = s_train[start:end]
q = q_train[start:end]
a = a_train[start:end]
# back-propagating each batch
cost_t = in_model.batch_fit(s, q, a)
total_cost += cost_t
if t % FLAGS.evaluation_interval == 0:
# evaluate on the whole trainset
eval_batch_size = 100
train_preds = np.zeros(shape=train_eval_labels.shape, dtype=np.int32)
for batch_start in xrange(0, len(s_train_eval), eval_batch_size):
batch_end = (batch_start + eval_batch_size) % (len(s_train_eval) + 1)
preds = in_model.predict(s_train_eval[batch_start:batch_end], q_train_eval[batch_start:batch_end])
train_preds[batch_start:batch_end] = preds
train_acc = metrics.accuracy_score(
train_preds,
train_eval_labels
)
# evaluating on the whole testset
test_preds = in_model.predict(s_test, q_test)
test_acc = metrics.accuracy_score(
test_preds,
test_labels
)
logger.info('-----------------------')
logger.info('Epoch:\t{}'.format(t))
logger.info('Total Cost:\t{}'.format(total_cost))
logger.info('Training Accuracy:\t{}'.format(train_acc))
logger.info('Testing Accuracy:\t{}'.format(test_acc))
logger.info('-----------------------')
if best_test_accuracy < test_acc:
best_train_accuracy, best_test_accuracy = train_acc, test_acc
return best_train_accuracy, best_test_accuracy
def main():
dialogues_train = map(lambda x: x, train_babi)
dialogues_train_eval = map(lambda x: [x[-1]], train_babi) \
if args.predict_last_turn_only \
else map(lambda x: x, train_babi)
dialogues_test = map(lambda x: [x[-1]], test_plus) \
if args.predict_last_turn_only \
else map(lambda x: x, test_plus)
data_train = reduce(lambda x, y: x + y, dialogues_train, [])
data_train_eval = reduce(lambda x, y: x + y, dialogues_train_eval, [])
data_test = reduce(lambda x, y: x + y, dialogues_test, [])
train_s, train_q, train_a = vectorize_data_dialog(
data_train,
word_idx,
answer_idx,
sentence_size,
memory_size
)
train_eval_s, train_eval_q, train_eval_a = vectorize_data_dialog(
data_train_eval,
word_idx,
answer_idx,
sentence_size,
memory_size
)
test_s, test_q, test_a = vectorize_data_dialog(
data_test,
word_idx,
answer_idx,
sentence_size,
memory_size
)
print("Training Size (dialogues)", len(dialogues_train))
print("Training/Evaluation Size (dialogues)", len(dialogues_train_eval))
print("Testing Size (dialogues)", len(dialogues_test))
print("Training Size (stories)", len(data_train))
print("Training/Evaluation Size (stories)", len(data_train_eval))
print("Testing Size (stories)", len(data_test))
tf.set_random_seed(FLAGS.random_state)
batch_size = FLAGS.batch_size
optimizer = tf.train.GradientDescentOptimizer(
learning_rate=FLAGS.learning_rate
)
batches = zip(
range(0, len(data_train) - batch_size, batch_size),
range(batch_size, len(data_train), batch_size)
)
batches = [(start, end) for start, end in batches]
with tf.Session() as sess:
model = MemN2N(
batch_size,
vocab_size,
sentence_size,
memory_size,
FLAGS.embedding_size,
answers_vectorized,
session=sess,
hops=FLAGS.hops,
max_grad_norm=FLAGS.max_grad_norm,
optimizer=optimizer
)
best_accuracy_per_epoch = train_model(
model,
(train_s, train_q, train_a),
(train_eval_s, train_eval_q, train_eval_a),
(test_s, test_q, test_a),
batches
)
return best_accuracy_per_epoch
if __name__ == '__main__':
accuracies = main()
print ('train: {0:.3f}, test: {1:.3f}'.format(*accuracies))