forked from domluna/memn2n
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdialog_cross_validation_single_fold.py
executable file
·243 lines (215 loc) · 7.8 KB
/
dialog_cross_validation_single_fold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
"""Example running MemN2N on a single bAbI task.
Download tasks from facebook.ai/babi """
from __future__ import absolute_import
from __future__ import print_function
import random
import sys
import os
from itertools import chain
from six.moves import range, reduce
import logging
from sklearn import metrics
import tensorflow as tf
import numpy as np
from dialog_data_utils import (
load_task,
vectorize_data_dialog,
get_candidates_list
)
from memn2n import MemN2N
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
logger = logging.getLogger(__file__)
tf.flags.DEFINE_float(
"learning_rate",
0.01,
"Learning rate for Adam Optimizer."
)
tf.flags.DEFINE_float("epsilon", 1e-8, "Epsilon value for Adam Optimizer.")
tf.flags.DEFINE_float("max_grad_norm", 40.0, "Clip gradients to this norm.")
tf.flags.DEFINE_integer(
"evaluation_interval",
1,
"Evaluate and print results every x epochs"
)
tf.flags.DEFINE_integer("batch_size", 1, "Batch size for training.")
tf.flags.DEFINE_integer("hops", 3, "Number of hops in the Memory Network.")
tf.flags.DEFINE_integer("epochs", 100, "Number of epochs to train for.")
tf.flags.DEFINE_integer(
"embedding_size",
20,
"Embedding size for embedding matrices."
)
tf.flags.DEFINE_integer("memory_size", 20, "Maximum size of memory.")
tf.flags.DEFINE_integer("task_id", 1, "bAbI task id, 1 <= id <= 6")
tf.flags.DEFINE_integer("random_state", 273, "Random state.")
tf.flags.DEFINE_string(
"data_dir",
"../babi_tools/dialog-bAbI-tasks/",
"Directory containing bAbI tasks"
)
FLAGS = tf.flags.FLAGS
random.seed(FLAGS.random_state)
print("Started Task:", FLAGS.task_id)
# task data
train, dev, test, oov = load_task(FLAGS.data_dir, FLAGS.task_id)
all_dialogues = train + dev + test + oov
data = reduce(lambda x, y: x + y, all_dialogues, [])
vocab = sorted(
reduce(
lambda x, y: x | y,
(set(list(chain.from_iterable(s)) + q + a) for s, q, a in data)
)
)
answer_candidates = get_candidates_list(FLAGS.data_dir)
word_idx = dict((c, i + 1) for i, c in enumerate(vocab))
answer_idx = dict(
(candidate, i + 1)
for i, candidate in enumerate(answer_candidates)
)
max_story_size = max(map(len, (s for s, _, _ in data)))
mean_story_size = int(np.mean([len(s) for s, _, _ in data]))
sentence_size = max(map(len, chain.from_iterable(s for s, _, _ in data)))
query_size = max(map(len, (q for _, q, _ in data)))
memory_size = min(FLAGS.memory_size, max_story_size)
vocab_size = len(word_idx) + 1 # +1 for nil word
answer_vocab_size = len(answer_idx) + 1
sentence_size = max(query_size, sentence_size) # for the position
print("Longest sentence length", sentence_size)
print("Longest story length", max_story_size)
print("Average story length", mean_story_size)
def train_model(in_model, in_train_sqa, in_test_sqa, in_batches):
best_train_accuracy, best_test_accuracy = 0.0, 0.0
for t in range(1, FLAGS.epochs+1):
s_train, q_train, a_train = in_train_sqa
s_test, q_test, a_test = in_test_sqa
train_labels = np.argmax(a_train, axis=1)
test_labels = np.argmax(a_test, axis=1)
np.random.shuffle(in_batches)
total_cost = 0.0
for start, end in in_batches:
s = s_train[start:end]
q = q_train[start:end]
a = a_train[start:end]
# back-propagating each batch
cost_t = in_model.batch_fit(s, q, a)
total_cost += cost_t
if t % FLAGS.evaluation_interval == 0:
# evaluate on the whole trainset
train_preds = in_model.predict(s_train, q_train)
train_acc = metrics.accuracy_score(train_preds, train_labels)
# evaluating on the whole testset
test_preds = in_model.predict(s_test, q_test)
test_acc = metrics.accuracy_score(test_preds, test_labels)
logger.info('-----------------------')
logger.info('Epoch:\t{}'.format(t))
logger.info('Total Cost:\t{}'.format(total_cost))
logger.info('Training Accuracy:\t{}'.format(train_acc))
logger.info('Testing Accuracy:\t{}'.format(test_acc))
logger.info('-----------------------')
best_train_accuracy, best_test_accuracy = max(
(best_train_accuracy, best_test_accuracy),
(train_acc, test_acc)
)
return best_train_accuracy, best_test_accuracy
def get_global_dialogue_index(in_dialogue_filename):
dialogue_index = int(in_dialogue_filename.split('.')[-1])
dialogue_dataset = in_dialogue_filename[len('dialog-babi-task1-API-calls-'):].partition('.')[0]
result = dialogue_index
if dialogue_dataset == 'trn':
return result
else:
result += len(train)
if dialogue_dataset == 'dev':
return result
else:
result += len(dev)
if dialogue_dataset == 'tst':
return result
else:
result += len(test)
return result
def main(
in_train_dialogue_name,
in_testset_size,
in_fold_number,
in_dataset_shuffle
):
trainset_idx = [get_global_dialogue_index(in_train_dialogue_name)]
testset_idx = []
testset_counter = in_fold_number * in_testset_size
while len(testset_idx) != in_testset_size:
current_idx = in_dataset_shuffle[testset_counter]
if current_idx not in trainset_idx:
testset_idx.append(current_idx)
testset_counter += 1
dialogues_train = map(lambda x: all_dialogues[x], trainset_idx)
dialogues_test = map(lambda x: all_dialogues[x], testset_idx)
data_train = reduce(lambda x, y: x + y, dialogues_train, [])
data_test = reduce(lambda x, y: x + y, dialogues_test, [])
train_s, train_q, train_a = vectorize_data_dialog(
data_train,
word_idx,
answer_idx,
sentence_size,
memory_size
)
test_s, test_q, test_a = vectorize_data_dialog(
data_test,
word_idx,
answer_idx,
sentence_size,
memory_size
)
print("Training Size (dialogues)", len(dialogues_train))
print("Testing Size (dialogues)", len(dialogues_test))
print("Training Size (stories)", len(data_train))
print("Testing Size (stories)", len(data_test))
tf.set_random_seed(FLAGS.random_state)
batch_size = FLAGS.batch_size
optimizer = tf.train.AdamOptimizer(
learning_rate=FLAGS.learning_rate,
epsilon=FLAGS.epsilon
)
batches = zip(
range(0, len(data_train) - batch_size, batch_size),
range(batch_size, len(data_train), batch_size)
)
batches = [(start, end) for start, end in batches]
with tf.Session() as sess:
model = MemN2N(
batch_size,
vocab_size,
sentence_size,
memory_size,
FLAGS.embedding_size,
answer_vocab_size=answer_vocab_size,
session=sess,
hops=FLAGS.hops,
max_grad_norm=FLAGS.max_grad_norm,
optimizer=optimizer
)
best_accuracy_per_epoch = train_model(
model,
(train_s, train_q, train_a),
(test_s, test_q, test_a),
batches
)
return best_accuracy_per_epoch
if __name__ == '__main__':
if len(sys.argv) != 5:
print('Usage: {} <train dialogue name> <testset size> <#fold> <dataset shuffle>'.format(os.path.basename(__file__)))
exit()
train_dialogue_filename, dataset_shuffle_filename = sys.argv[1], sys.argv[4]
testset_size, fold_number = map(int, sys.argv[2:4])
with open(dataset_shuffle_filename) as dataset_shuffle_in:
dataset_shuffle = map(
int,
dataset_shuffle_in.readline().strip().split(';')
)
accuracies = main(
train_dialogue_filename,
testset_size,
fold_number,
dataset_shuffle
)
print ('train: {0:.3f}, test: {1:.3f}'.format(*accuracies))