-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
301 lines (266 loc) · 11.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Big Data</title>
<meta name="description" content="A framework for easily creating beautiful presentations using HTML">
<meta name="author" content="Iskra Big Data">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="css/reveal.css">
<link rel="stylesheet" href="css/theme/white.css" id="theme">
<link rel="stylesheet" href="css/theme/iskra.css">
<!-- Code syntax highlighting -->
<link rel="stylesheet" href="lib/css/zenburn.css">
<!-- Printing and PDF exports -->
<script>
var link = document.createElement( 'link' );
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = window.location.search.match( /print-pdf/gi ) ? 'css/print/pdf.css' : 'css/print/paper.css';
document.getElementsByTagName( 'head' )[0].appendChild( link );
</script>
<!--[if lt IE 9]>
<script src="lib/js/html5shiv.js"></script>
<![endif]-->
</head>
<body>
<div class="reveal">
<!-- Any section element inside of this container is displayed as a slide -->
<div class="slides">
<section>
<h1>What is Big Data?</h1>
<h2>Light introduction</h2>
<h4>Ramon Navarro</h4>
<h4>Berta Capdevila</h4>
<p>
<small>Created by <a href="http://iskra.cat">Iskra Big Data Solutions</a> / <a href="http://twitter.com/iskraTIC">@iskraTIC</a></small>
</p>
</section>
<section data-background="images/lotsinfo.jpg">
<h2 class="fragment canvi">LOTS of INFORMATION</h2>
<aside class="notes">
Can we manage to get information from our data ? What can we do to get what is needed ?
Exemple : Business inteligence - Data analysis - Machine learning
</aside>
</section>
<section data-background="http://media2.giphy.com/media/AcfcFH8ix0qOI/giphy.gif">
<h2 class="fragment canvi">NO MAGIC</h2>
<aside class="notes">
Can we manage to get information from our data ? What can we do to get what is needed ?
</aside>
</section>
<!-- Example of nested vertical slides -->
<section>
<section>
<h2>Data Scientists to rescue!</h2>
<img src="images/josh.png"/>
</section>
<section>
<blockquote>Data Scientist (n.): Person who is worst at statistics that any statistician and wordst at software engineering than any software engineer</blockquote>
<p><a href="http://twitter.com/chdoig">@chdoig</a></p>
</section>
<section>
<img src="images/Data_Science_VD.png"/>
<p><a href="http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram">http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram</a></p>
</section>
<section>
<img data-src="images/mds_f.png" style="max-height: 700px"/>
</section>
</section>
<section>
<h2>Team work</h2>
<div data-svg-fragment="images/DS.svg#[*|label=Fons]">
<a class="fragment" title="[*|label=primer]"></a>
<a class="fragment" title="[*|label=segon]"></a>
<a class="fragment" title="[*|label=tercer]"></a>
<a class="fragment" title="[*|label=quart]"></a>
<a class="fragment" title="[*|label=cinque]"></a>
</div>
</section>
<section>
<section>
<h2>Software</h2>
</section>
<section>
<h2>Software Data Scientist Modeler</h2>
<ul>
<li>R</li>
<li>SKlearn</li>
<li>PyBrain</li>
<li>TextBlob</li>
<li>Theano</li>
<li>TensorFlow</li>
</ul>
</section>
<section>
<h2>Software Data Scientific Computing</h2>
<ul>
<li>SciPy</li>
<li>NumPy</li>
<li>Numba</li>
</ul>
</section>
<section>
<h2>Software Data Analytics</h2>
<ul>
<li>Pandas</li>
<li>Postgresql</li>
<li>Excel</li>
</ul>
</section>
<section>
<h2>Software Distributed System</h2>
<ul>
<li>Spark</li>
<li>Hadoop</li>
</ul>
</section>
<section>
<h2>Software Data Web</h2>
<ul>
<li>Pyramid</li>
<li>Bokeh</li>
<li>Plone</li>
</ul>
</section>
</section>
<!-- Berta -->
<section>
<h2>Machine Learning</h2>
</section>
<section>
<section>
<blackquote>"Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed.”</blackquote>
<p>Arthur Samuel (1959)</p>
</section>
<section>
<blackquote>"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.”
<p>Tom Mitchell (1997)</p>
<ul>
<li class="fragment canvi"><b>Task T</b>: Predict traffic patterns at a busy intersection</li>
<li class="fragment canvi"><b>Experience E</b>: Run past data throught a machine learning algorithm</li>
<li class="fragment canvi">If correct:</li>
<li class="fragment canvi"><b>Performance measure P</b>: Better predicting future traffic patterns</li>
</ul>
</section>
<section>
<h2>Predicting house pricing</h2>
<img src="images/regression1.png">
</section>
<section>
<img src="images/regression2.png">
</section>
<section>
<img src="images/regression3.png">
<p class="fragment canvi">150.000 $</p>
</section>
<section>
<img src="images/regression4.png">
<p class="fragment canvi">200.000 $</p>
</section>
<section>
<blackquote>"The goal of ML is never to make “perfect” guesses, because ML deals in domains where there is no such thing. The goal is to make guesses that are good enough to be useful.”
<p>George E. P. Box</p>
</section>
</section>
<section>
<section>
<h2>Steps</h2>
</section>
<section data-background="images/html.jpeg">
<h2 style="color: white;">1. <b>Reading</b> in the data and <b>cleaning</b> it</h2>
</section>
<section data-background="images/textmining.png">
<h2 style="color: white;">2. <b>Exploring</b> and <b>understanding</b> the input data</h2>
</section>
<section data-background="images/aws-ml-raw-data.png">
<h2 style="color: white;">3. <b>Analyzing</b> how best to present the data to the learning algorithm</h2>
</section>
<section data-background="images/ml_map_darker.png" >
<h2 style="color: white;">4. <b>Choosing</b> the right model and learning algorithm</h2>
</section>
<section data-background="images/check_error.jpg">
<h2 style="color: white;">5. <b>Measuring</b> the performance correctly</h2>
</section>
</section>
<section>
<section>
<h2>Application Fields</h2>
</section>
<section data-background="images/datamining.jpg">
<h2 style="color: white;">Data mining</h2>
<ul style="color: white;">
<li>Web click data</li>
<li>Medical records</li>
<li>Informatic Biology</li>
<li>Engineering</li>
</ul>
</section>
<section data-background="images/type.jpg">
<h2 style="color: white;">Applications you cannot write by hand</h2>
<ul style="color: white;">
<li>Handwriting recognition</li>
<li>Natural Language Processing (NLP) or Computer Vision</li>
</ul>
</section>
<section>
<h2>Self-customizing programs</h2>
<img data-src="images/netflix-recommendations.jpg" style="max-height: 150px"/>
<img data-src="images/amazon-recommendations.png" style="max-height: 200px"/>
<img data-src="images/google-recommendations.png" style="max-height: 200px"/>
</section>
<section data-background="images/brain-image.jpeg">
<h2 style="color: white;">Human learning</h2>
</section>
</section>
<section>
<section data-background="http://media2.giphy.com/media/AcfcFH8ix0qOI/giphy.gif">
<h2 style="color: white;">IS MACHINE LEARNING MAGIC?</h2>
<h2 class="fragment canvi">NO MAGIC</h2>
<aside class="notes">
Can we manage to get information from our data ? What can we do to get what is needed ?
</aside>
</section>
<section>
<blackquote>"Machine Learning is the extraction of knowledge from data. You have a question and you are trying to answer, and you think the answer is in the data".
</blackquote>
</section>
</section>
<section style="text-align: left;">
<h1>THE END</h1>
<h2>Gràcies</h2>
<h3><a href="http://iskra.cat">iskra.cat</a></h3>
</section>
</div>
</div>
<script src="lib/js/head.min.js"></script>
<script src="js/reveal.js"></script>
<script>
// Full list of configuration options available at:
// https://github.com/hakimel/reveal.js#configuration
Reveal.initialize({
controls: true,
progress: true,
history: true,
center: true,
parallaxBackgroundImage: 'images/background.png',
parallaxBackgroundSize: '100% 100%',
parallaxBackgroundHorizontal: 0,
parallaxBackgroundVertical: 0,
transition: 'slide', // none/fade/slide/convex/concave/zoom
// Optional reveal.js plugins
dependencies: [
{ src: 'lib/js/classList.js', condition: function() { return !document.body.classList; } },
{ src: 'plugin/markdown/marked.js', condition: function() { return !!document.querySelector( '[data-markdown]' ); } },
{ src: 'plugin/markdown/markdown.js', condition: function() { return !!document.querySelector( '[data-markdown]' ); } },
{ src: 'plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } },
{ src: 'plugin/zoom-js/zoom.js', async: true },
{ src: 'plugin/notes/notes.js', async: true },
{ src: 'plugin/reveal-svg-fragment.js', condition: function() { return !!document.querySelector( '[data-svg-fragment]' ); }}
]
});
</script>
</body>
</html>