本文介绍针对PP-OCR模型库的Python推理引擎使用方法,内容依次为文本检测、文本识别、方向分类器以及三者串联在CPU、GPU上的预测方法。
文本检测模型推理,默认使用DB模型的配置参数。超轻量中文检测模型推理,可以执行如下命令:
# 下载超轻量中文检测模型:
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar xf ch_PP-OCRv3_det_infer.tar
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/"
可视化文本检测结果默认保存到./inference_results
文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
通过参数limit_type
和det_limit_side_len
来对图片的尺寸进行限制,
limit_type
可选参数为[max
, min
],
det_limit_size_len
为正整数,一般设置为32 的倍数,比如960。
参数默认设置为limit_type='max', det_limit_side_len=960
。表示网络输入图像的最长边不能超过960,
如果超过这个值,会对图像做等宽比的resize操作,确保最长边为det_limit_side_len
。
设置为limit_type='min', det_limit_side_len=960
则表示限制图像的最短边为960。
如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以设置det_limit_side_len 为想要的值,比如1216:
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --det_limit_type=max --det_limit_side_len=1216
如果想使用CPU进行预测,执行命令如下
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --use_gpu=False
注意 PP-OCRv3
的识别模型使用的输入shape为3,48,320
, 如果使用其他识别模型,则需根据模型设置参数--rec_image_shape
。此外,PP-OCRv3
的识别模型默认使用的rec_algorithm
为SVTR_LCNet
,注意和原始SVTR
的区别。
超轻量中文识别模型推理,可以执行如下命令:
# 下载超轻量中文识别模型:
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xf ch_PP-OCRv3_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./ch_PP-OCRv3_rec_infer/"
执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:
Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.9956803321838379)
英文识别模型推理,可以执行如下命令, 注意修改字典路径:
# 下载英文数字识别模型:
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar
tar xf en_PP-OCRv3_det_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./en_PP-OCRv3_det_infer/" --rec_char_dict_path="ppocr/utils/en_dict.txt"
执行命令后,上图的预测结果为:
Predicts of ./doc/imgs_words/en/word_1.png: ('JOINT', 0.998160719871521)
如果您需要预测的是其他语言模型,可以在此链接中找到对应语言的inference模型,在使用inference模型预测时,需要通过--rec_char_dict_path
指定使用的字典路径, 同时为了得到正确的可视化结果,需要通过 --vis_font_path
指定可视化的字体路径,doc/fonts/
路径下有默认提供的小语种字体,例如韩文识别:
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
执行命令后,上图的预测结果为:
Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
方向分类模型推理,可以执行如下命令:
# 下载超轻量中文方向分类器模型:
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"
执行命令后,上面图像的预测结果(分类的方向和得分)会打印到屏幕上,示例如下:
Predicts of ./doc/imgs_words/ch/word_4.jpg:['0', 0.9999982]
注意 PP-OCRv3
的识别模型使用的输入shape为3,48,320
, 如果使用其他识别模型,则需根据模型设置参数--rec_image_shape
。此外,PP-OCRv3
的识别模型默认使用的rec_algorithm
为SVTR_LCNet
,注意和原始SVTR
的区别。
以超轻量中文OCR模型推理为例,在执行预测时,需要通过参数image_dir
指定单张图像或者图像集合的路径、参数det_model_dir
,cls_model_dir
和rec_model_dir
分别指定检测,方向分类和识别的inference模型路径。参数use_angle_cls
用于控制是否启用方向分类模型。use_mp
表示是否使用多进程。total_process_num
表示在使用多进程时的进程数。可视化识别结果默认保存到 ./inference_results 文件夹里面。
# 使用方向分类器
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --cls_model_dir="./cls/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=true
# 不使用方向分类器
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=false
# 使用多进程
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=false --use_mp=True --total_process_num=6
执行命令后,识别结果图像如下: