forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqlora_finetuning_cpu.py
107 lines (96 loc) · 4.37 KB
/
qlora_finetuning_cpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import os
import transformers
from transformers import LlamaTokenizer
from transformers import BitsAndBytesConfig
from bigdl.llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training, LoraConfig
from bigdl.llm.transformers import AutoModelForCausalLM
from datasets import load_dataset
import argparse
from bigdl.llm.utils.isa_checker import ISAChecker
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--dataset', type=str, default="Abirate/english_quotes")
args = parser.parse_args()
model_path = args.repo_id_or_model_path
dataset_path = args.dataset
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
data = load_dataset(dataset_path)
def merge(row):
row['prediction'] = row['quote'] + ' ->: ' + str(row['tags'])
return row
data['train'] = data['train'].map(merge)
# use the max_length to reduce memory usage, should be adjusted by different datasets
data = data.map(lambda samples: tokenizer(samples["prediction"], max_length=256), batched=True)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=False,
bnb_4bit_quant_type="int4", # nf4 not supported on cpu yet
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(model_path,
quantization_config=bnb_config, )
# below is also supported
# model = AutoModelForCausalLM.from_pretrained(model_path,
# # nf4 not supported on cpu yet
# load_in_low_bit="sym_int4",
# optimize_model=False,
# torch_dtype=torch.bfloat16,
# modules_to_not_convert=["lm_head"], )
model = model.to('cpu')
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=False)
model.enable_input_require_grads()
config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q_proj", "k_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
tokenizer.pad_token_id = 0
tokenizer.padding_side = "left"
# To avoid only one core is used on client CPU
isa_checker = ISAChecker()
bf16_flag = isa_checker.check_avx512()
trainer = transformers.Trainer(
model=model,
train_dataset=data["train"],
args=transformers.TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=1,
warmup_steps=20,
max_steps=200,
learning_rate=2e-4,
save_steps=100,
bf16=bf16_flag,
logging_steps=20,
output_dir="outputs",
optim="adamw_hf", # paged_adamw_8bit is not supported yet
# gradient_checkpointing=True, # can further reduce memory but slower
),
# Inputs are dynamically padded to the maximum length of a batch
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
result = trainer.train()
print(result)