-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdigit_recognizer.py
96 lines (70 loc) · 2.74 KB
/
digit_recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# TensorFlow handwritten digit analysis
#
#
# Written by Ryan Monaghan Jr. for the purpose of demonstrating a real world application
# of a machine learning algorithm for identifying/digitizing handwritten digits.
#
# March 13th, 2019
#
# Works with all keras datasets
from __future__ import absolute_import, division, print_function
# import tensorflow and keras datasets
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
print("Using Tensorflow version", tf.__version__)
# Define dataset to be used
mnist_dataset = keras.datasets.mnist
# Parse the dataset
(train_images, train_labels), (test_images, test_labels) = mnist_dataset.load_data()
# Define labels
class_labels = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
# Scale and then divide by 255
train_images = train_images / 255.0
test_images = test_images / 255.0
# Define layers
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
# Train the model
model.fit(train_images, train_labels, epochs=10) # Although this is enough, you can change the epochs here
test_loss, test_acc = model.evaluate(test_images, test_labels)
print("Test accuracy:", test_acc)
predictions = model.predict(test_images)
# Plotting functions for displaying after the model is trained
def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_labels[predicted_label], 100 * np.max(predictions_array), class_labels[true_label]), color=color)
def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array[i], true_label[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
plt.subplot(num_rows, 2*num_cols, 2*i+1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(num_rows, 2*num_cols, 2*i+2)
plot_value_array(i, predictions, test_labels)
plt.show()