diff --git a/packaging_ventral_rootlets/run_inference_single_subject.py b/packaging_ventral_rootlets/run_inference_single_subject.py index 14ec7aaf..56a91587 100644 --- a/packaging_ventral_rootlets/run_inference_single_subject.py +++ b/packaging_ventral_rootlets/run_inference_single_subject.py @@ -117,14 +117,31 @@ def main(): parser = get_parser() args = parser.parse_args() - fname_file = args.i - fname_file_out = args.o + fname_file = os.path.expanduser(args.i) + fname_file_out = os.path.expanduser(args.o) print(f'\nFound {fname_file} file.') + # If the fname_file is .nii, gzip it + # This is needed, because the filename suffix must match the `file_ending` in `dataset.json`. And as the + # `file_ending` for the ventral model is `.nii.gz`, we gzip the input file if it is not already gzipped. + # Context: https://github.com/ivadomed/model-spinal-rootlets/issues/49 + if not fname_file.endswith('.nii.gz'): + print('Compressing the input image...') + os.system('gzip -f {}'.format(fname_file)) + fname_file = fname_file + '.gz' + print(f'Compressed {fname_file}') + + # Add .gz suffix to the output file if not already present. This is needed because we gzip the input file. + if not fname_file_out.endswith('.gz'): + fname_file_out = fname_file_out + '.gz' + # Create temporary directory in the temp to store the reoriented images tmpdir = tmp_create() # Copy the file to the temporary directory using shutil.copyfile - fname_file_tmp = os.path.join(tmpdir, os.path.basename(fname_file)) + # NOTE: Add the `_0000` suffix, because nnUNet removes the last five characters: + # https://github.com/MIC-DKFZ/nnUNet/blob/master/nnunetv2/inference/predict_from_raw_data.py#L171C19-L172C51 + # Context: https://github.com/ivadomed/model-spinal-rootlets/issues/49 + fname_file_tmp = os.path.join(tmpdir, os.path.basename(add_suffix(fname_file, '_0000'))) shutil.copyfile(fname_file, fname_file_tmp) print(f'Copied {fname_file} to {fname_file_tmp}') @@ -138,8 +155,7 @@ def main(): # reorient the image to LPI using SCT os.system('sct_image -i {} -setorient LPI -o {}'.format(fname_file_tmp, fname_file_tmp)) - # NOTE: for individual images, the _0000 suffix is not needed. - # BUT, the images should be in a list of lists + # Note: even a single file must be in a list of lists fname_file_tmp_list = [[fname_file_tmp]] # Use fold_all (all train/val subjects were used for training) or specific fold(s) @@ -169,7 +185,7 @@ def main(): # initializes the network architecture, loads the checkpoint predictor.initialize_from_trained_model_folder( - join(args.path_model), + join(os.path.expanduser(args.path_model)), use_folds=folds_avail, checkpoint_name='checkpoint_final.pth' if not args.use_best_checkpoint else 'checkpoint_best.pth', )