-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_MBD_Cultural_Heritage.py
219 lines (165 loc) · 10.7 KB
/
train_MBD_Cultural_Heritage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from dataset.ShapeNetDataset import *
from torch.utils.data import DataLoader
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from losses.emd import emd_module as emd
from losses.chamfer import champfer_loss as chamfer
from models.hole_residual import MSNautoencoder, PointNetRes, MSNmodel, NormalModel
from utils.utils import weights_init, visdom_show_pc, save_paths, save_model, vis_curve
from utils.metrics import AverageValueMeter
from losses.MDS import MDS_module
import visdom
import sys
#Input options
parser = argparse.ArgumentParser()
parser.add_argument('--batchSize', type=int, default=32, help='input batch size')
parser.add_argument('--model', type=str, default = '', help='optional reload model path')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=12)
parser.add_argument('--nepoch', type=int, default=200, help='number of epochs to train for')
parser.add_argument('--num_points', type=int, default = 2048, help='number of points')
parser.add_argument('--loss', type=str, default = "emd", help='loss distance')
parser.add_argument('--visualize', type=bool, default = True, help='bool visualize')
parser.add_argument('--vis_step', type=int, default = 50, help='visualize step')
parser.add_argument('--vis_step_test', type=int, default = 20, help='visualize step')
parser.add_argument('--net_alfa', type=float, default = 2000, help='net loss weight')
parser.add_argument('--vis_port', type=int, default = 8997, help='visdom_port')
parser.add_argument('--vis_port_test', type=int, default = 8998, help='visdom_port')
parser.add_argument('--vis_env', type=str, default = "ENV", help='visdom environment')
parser.add_argument('--gpu_n', type=int, default = 0, help='cuda gpu device number')
parser.add_argument('--lrate', type=float, default = 0.0005, help='learning rate')
parser.add_argument('--n_primitives', type=int, default = 16, help='number of primitives')
opt = parser.parse_args()
#We use Visdom to see the training progress
vis = visdom.Visdom(port = opt.vis_port, env= opt.vis_env + " TRAIN")
vis_test = visdom.Visdom(port = opt.vis_port_test , env= opt.vis_env + " TEST")
# initialize variables
dir_name, logname = save_paths(opt.model, "train_MBD_Cultural_Heritage", "CHDataset", "hole_residual")
rec_loss1_train = AverageValueMeter()
rec_loss1_test = AverageValueMeter()
rec_loss2_train = AverageValueMeter()
rec_loss2_test = AverageValueMeter()
rec_loss_train = AverageValueMeter()
rec_loss_test = AverageValueMeter()
best_loss = 20000
n_models = 50
# Shapenet part dataloader
dir_train = "./data/datasetCH/pottery_augmented_filtered"
dir_test = "./data/datasetCH/pottery_augmented_filtered_test"
holes_dir = ""
complete_list_train = "./data/datasetCH/pottery_augmented_filtered_complete_train.txt"
complete_list_test = "./data/datasetCH/pottery_augmented_filtered_complete_test.txt"
dataset_train = CHDataset(dir_train, holes_dir, complete_list_train, n_models, npoints=opt.num_points)
dataloader_train = DataLoader(dataset_train, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers))
dataset_test = CHDataset(dir_test, holes_dir, complete_list_test, n_models, npoints=opt.num_points, do_holes=False)
dataloader_test = DataLoader(dataset_test, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers))
device = torch.device("cuda:" + str(opt.gpu_n) if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
print("Using cuda device")
torch.cuda.set_device(device)
#Create Ours-MBD model and send it to GPU
network = MSNmodel(opt.num_points, device).to(device)
network.apply(weights_init)
network.cuda()
# Create the optimizers
lrate_m = 0.0005
lrate_r = 0.0005
model_optimizer = optim.Adam(network.model.parameters(), lr = lrate_m)
residual_optimizer = optim.Adam(network.residual.parameters(), lr = lrate_r)
#Load a pretrained model to continue training
if opt.model != '' and os.path.isfile("log/" + opt.model + "/model.pth"):
model_checkpoint = torch.load("log/" + opt.model + "/model.pth")
residual_checkpoint = torch.load("log/" + opt.model + "/residual.pth")
print("Model network weights loaded ")
network.model.load_state_dict(model_checkpoint['state_dict'])
model_optimizer.load_state_dict(model_checkpoint['optimizer'])
print("Residual network weights loaded ")
network.residual.load_state_dict(residual_checkpoint['state_dict'])
residual_optimizer.load_state_dict(residual_checkpoint['optimizer'])
# save model architecture
with open(logname, 'a') as f: #open and append
f.write(str(network.model) + '\n')
f.write(str(network.residual)+'\n')
n_points_out = opt.num_points // 2
labels_generated_points = torch.Tensor(range(1, (opt.n_primitives+1)*(n_points_out//opt.n_primitives)+1)).view(n_points_out//opt.n_primitives,(opt.n_primitives+1)).transpose(0,1)
labels_generated_points = (labels_generated_points)%(opt.n_primitives+1)
labels_generated_points = labels_generated_points.contiguous().view(-1)
#Main loop for training
for epoch in range(opt.nepoch):
network.model.train()
network.residual.train()
# -----------------------------------training phase ----------------------------------
for i, data in enumerate(dataloader_train, 0):
# train generator
model_optimizer.zero_grad()
residual_optimizer.zero_grad()
name, in_partial, in_hole, in_complete = data
in_partial = in_partial.contiguous().float().to(device)
in_hole = in_hole.contiguous().float().to(device)
in_complete = in_complete.contiguous().float().to(device)
output, output2, rec_loss1, rec_loss2, exp_loss, _, _ = network(in_partial, in_hole, in_complete, 0.005, 50)
rec_g_loss = rec_loss1 + rec_loss2 + exp_loss
rec_g_loss.backward()
model_optimizer.step()
residual_optimizer.step()
# values to plot and save
rec_loss_train.update(rec_g_loss.item())
rec_loss1_train.update(rec_loss1.item())
rec_loss2_train.update(rec_loss2.item())
# visualization
if opt.visualize and i % opt.vis_step == 0:
idx = random.randint(0, in_partial.size()[0] - 1)
# print(name[idx])
pc_rec = np.concatenate((in_partial.contiguous()[idx].data.cpu().numpy(), output.contiguous()[idx].data.cpu().numpy()))
visdom_show_pc(in_hole.contiguous()[idx].data.cpu(), "TRAIN_IN_HOLE", "IN_HOLE", vis)
visdom_show_pc(in_complete.contiguous()[idx].data.cpu(), "TRAIN_IN_COMPLETE", "TRAIN_IN_COMPLETE", vis)
visdom_show_pc(in_partial.contiguous()[idx].data.cpu(), "TRAIN_IN_PARTIAL", "TRAIN_IN_PARTIAL", vis)
visdom_show_pc(output.contiguous()[idx].data.cpu(), "TRAIN_OUT_HOLE", "TRAIN_OUT_HOLE", vis, Y =labels_generated_points[0:output.size(1)] )
visdom_show_pc(output2.contiguous()[idx].data.cpu(), "TRAIN_OUT_COMPLETE", "TRAIN_OUT_COMPLETE", vis)
visdom_show_pc(pc_rec, "TRAIN_OUT_MERGE", "TRAIN_OUT_MERGE", vis)
# log per batch
print("train -> E: ", epoch, "/", i, " Loss: ", rec_loss_train.val, " EMD1: ", rec_loss1_train.val, " EMD2: ", rec_loss2_train.val, " penalty: ", exp_loss.item())
# ---------------------------------validation phase--------------------------------------
if epoch % 5 == 0:
network.model.eval()
network.residual.eval()
with torch.no_grad():
for i, data in enumerate(dataloader_test, 0):
name, in_partial, in_hole, in_complete = data
in_partial = in_partial.contiguous().float().to(device)
in_hole = in_hole.contiguous().float().to(device)
in_complete = in_complete.contiguous().float().to(device)
output, output2, rec_loss1, rec_loss2, exp_loss, _, _ = network(in_partial, in_hole, in_complete, 0.005, 50)
rec_g_loss = rec_loss1 + rec_loss2 + exp_loss
# values to plot and save
rec_loss_test.update(rec_g_loss.item())
rec_loss1_test.update(rec_loss1.item())
rec_loss2_test.update(rec_loss2.item())
# visualization
if opt.visualize and i % opt.vis_step == 0:
idx = random.randint(0, in_partial.size()[0] - 1)
pc_rec = np.concatenate((in_partial.contiguous()[idx].data.cpu().numpy(), output.contiguous()[idx].data.cpu().numpy()))
visdom_show_pc(in_complete.contiguous()[idx].data.cpu(), str(i) + " COMPLETE", str(i) + " COMPLETE", vis_test)
visdom_show_pc(output.contiguous()[idx].data.cpu(), str(i) + " OUT_HOLE", str(i) + " OUT_HOLE", vis_test, Y =labels_generated_points[0:output.size(1)] )
visdom_show_pc(pc_rec, str(i) + " OUT_MERGE", str(i) + " OUT_MERGE", vis_test)
visdom_show_pc(output2.contiguous()[idx].data.cpu(), str(i) + " OUT_COMPLETE", str(i) + " OUT_COMPLETE", vis_test)
# log per batch
print("test -> E: ", epoch, "/", i, " Loss: ", rec_loss_test.val, " EMD1: ", rec_loss1_test.val, " EMD2: ", rec_loss2_test.val, " penalty: ", exp_loss.item())
rec_loss_train.end_epoch()
rec_loss_test.end_epoch()
rec_loss1_train.end_epoch()
rec_loss2_train.end_epoch()
rec_loss1_test.end_epoch()
rec_loss2_test.end_epoch()
vis_curve(rec_loss_train.avgs, rec_loss_test.avgs, "rec_loss", "rec_loss", vis)
vis_curve(rec_loss1_train.avgs, rec_loss1_test.avgs, "rec_loss1", "rec_loss1", vis)
vis_curve(rec_loss2_train.avgs, rec_loss2_test.avgs, "rec_loss2", "rec_loss2", vis)
if (epoch % 5 == 0) or (epoch == opt.nepoch - 1):
print("Loss reduced from %8.5f to %8.5f" % (best_loss, rec_loss_test.avg))
best_loss = rec_loss_test.avg
save_model(network.model.state_dict(), model_optimizer.state_dict(), logname, dir_name, rec_loss_train, rec_loss_test, epoch, lrate_m, rec_loss1_train.avgs, rec_loss1_test.avgs)
save_model(network.residual.state_dict(), residual_optimizer.state_dict(), logname, dir_name, rec_loss_train, rec_loss_test, epoch, lrate_r, rec_loss2_train.avgs, rec_loss2_test.avgs, net_name= "residual")
save_model(network.model.state_dict(), model_optimizer.state_dict(), logname, dir_name, rec_loss_train, rec_loss_test, epoch, lrate_m, rec_loss1_train.avgs, rec_loss1_test.avgs,net_name= "model_C")
save_model(network.residual.state_dict(), residual_optimizer.state_dict(), logname, dir_name, rec_loss_train, rec_loss_test, epoch, lrate_r, rec_loss2_train.avgs, rec_loss2_test.avgs, net_name= "residual_C")