reading_time | stage | group | info |
---|---|---|---|
true |
Enablement |
Distribution |
To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments |
This page describes GitLab reference architecture for up to 5,000 users. For a full list of reference architectures, see Available reference architectures.
NOTE: Note: This reference architecture is designed to help your organization achieve a highly-available GitLab deployment. If you do not have the expertise or need to maintain a highly-available environment, you can have a simpler and less costly-to-operate environment by using the 2,000-user reference architecture.
- Supported users (approximate): 5,000
- High Availability: Yes
- Test requests per second (RPS) rates: API: 100 RPS, Web: 10 RPS, Git: 10 RPS
Service | Nodes | Configuration | GCP | AWS | Azure |
---|---|---|---|---|---|
External load balancing node | 1 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 | c5.large | F2s v2 |
Redis | 3 | 2 vCPU, 7.5 GB memory | n1-standard-2 | m5.large | D2s v3 |
Consul + Sentinel | 3 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 | c5.large | F2s v2 |
PostgreSQL | 3 | 2 vCPU, 7.5 GB memory | n1-standard-2 | m5.large | D2s v3 |
PgBouncer | 3 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 | c5.large | F2s v2 |
Internal load balancing node | 1 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 | c5.large | F2s v2 |
Gitaly | 2 (minimum) | 8 vCPU, 30 GB memory | n1-standard-8 | m5.2xlarge | D8s v3 |
Sidekiq | 4 | 2 vCPU, 7.5 GB memory | n1-standard-2 | m5.large | D2s v3 |
GitLab Rails | 3 | 16 vCPU, 14.4 GB memory | n1-highcpu-16 | c5.4xlarge | F16s v2 |
Monitoring node | 1 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 | c5.large | F2s v2 |
Object storage | n/a | n/a | n/a | n/a | n/a |
NFS server (optional, not recommended) | 1 | 4 vCPU, 3.6 GB memory | n1-highcpu-4 | c5.xlarge | F4s v2 |
stateDiagram-v2
[*] --> LoadBalancer
LoadBalancer --> ApplicationServer
ApplicationServer --> BackgroundJobs
ApplicationServer --> Gitaly
ApplicationServer --> Redis
ApplicationServer --> PgBouncer
PgBouncer --> Database
ApplicationServer --> ObjectStorage
BackgroundJobs --> ObjectStorage
ApplicationMonitoring -->ApplicationServer
ApplicationMonitoring -->Redis
ApplicationMonitoring -->PgBouncer
ApplicationMonitoring -->Database
ApplicationMonitoring -->BackgroundJobs
state Database {
"PG_Primary_Node"
"PG_Secondary_Node_1..2"
}
state Redis {
"R_Primary_Node"
"R_Replica_Node_1..2"
"R_Consul/Sentinel_1..3"
}
state Gitaly {
"Gitaly_1..2"
}
state BackgroundJobs {
"Sidekiq_1..4"
}
state ApplicationServer {
"GitLab_Rails_1..3"
}
state LoadBalancer {
"LoadBalancer_1"
}
state ApplicationMonitoring {
"Prometheus"
"Grafana"
}
state PgBouncer {
"Internal_Load_Balancer"
"PgBouncer_1..3"
}
The Google Cloud Platform (GCP) architectures were built and tested using the Intel Xeon E5 v3 (Haswell) CPU platform. On different hardware you may find that adjustments, either lower or higher, are required for your CPU or node counts. For more information, see our Sysbench-based CPU benchmark.
Due to better performance and availability, for data objects (such as LFS, uploads, or artifacts), using an object storage service is recommended instead of using NFS. Using an object storage service also doesn't require you to provision and maintain a node.
To set up GitLab and its components to accommodate up to 5,000 users:
- Configure the external load balancing node to handle the load balancing of the GitLab application services nodes.
- Configure Redis.
- Configure Consul and Sentinel.
- Configure PostgreSQL, the database for GitLab.
- Configure PgBouncer.
- Configure the internal load balancing node.
- Configure Gitaly, which provides access to the Git repositories.
- Configure Sidekiq.
- Configure the main GitLab Rails application to run Puma/Unicorn, Workhorse, GitLab Shell, and to serve all frontend requests (which include UI, API, and Git over HTTP/SSH).
- Configure Prometheus to monitor your GitLab environment.
- Configure the object storage used for shared data objects.
- Configure Advanced Search (optional) for faster, more advanced code search across your entire GitLab instance.
- Configure NFS (optional, and not recommended) to have shared disk storage service as an alternative to Gitaly or object storage. You can skip this step if you're not using GitLab Pages (which requires NFS).
The servers start on the same 10.6.0.0/24 private network range, and can connect to each other freely on these addresses.
The following list includes descriptions of each server and its assigned IP:
10.6.0.10
: External Load Balancer10.6.0.61
: Redis Primary10.6.0.62
: Redis Replica 110.6.0.63
: Redis Replica 210.6.0.11
: Consul/Sentinel 110.6.0.12
: Consul/Sentinel 210.6.0.13
: Consul/Sentinel 310.6.0.31
: PostgreSQL primary10.6.0.32
: PostgreSQL secondary 110.6.0.33
: PostgreSQL secondary 210.6.0.21
: PgBouncer 110.6.0.22
: PgBouncer 210.6.0.23
: PgBouncer 310.6.0.20
: Internal Load Balancer10.6.0.51
: Gitaly 110.6.0.52
: Gitaly 210.6.0.71
: Sidekiq 110.6.0.72
: Sidekiq 210.6.0.73
: Sidekiq 310.6.0.74
: Sidekiq 410.6.0.41
: GitLab application 110.6.0.42
: GitLab application 210.6.0.43
: GitLab application 310.6.0.81
: Prometheus
In an active/active GitLab configuration, you'll need a load balancer to route traffic to the application servers. The specifics on which load balancer to use or its exact configuration is beyond the scope of GitLab documentation. We hope that if you're managing multi-node systems like GitLab, you already have a load balancer of choice. Some load balancer examples include HAProxy (open-source), F5 Big-IP LTM, and Citrix Net Scaler. This documentation outline the ports and protocols needed for use with GitLab.
This architecture has been tested and validated with HAProxy as the load balancer. Although other load balancers with similar feature sets could also be used, those load balancers have not been validated.
The next question is how you will handle SSL in your environment. There are several different options:
- The application node terminates SSL.
- The load balancer terminates SSL without backend SSL and communication is not secure between the load balancer and the application node.
- The load balancer terminates SSL with backend SSL and communication is secure between the load balancer and the application node.
Configure your load balancer to pass connections on port 443 as TCP
rather
than HTTP(S)
protocol. This will pass the connection to the application node's
NGINX service untouched. NGINX will have the SSL certificate and listen on port 443.
See the NGINX HTTPS documentation for details on managing SSL certificates and configuring NGINX.
Configure your load balancer to use the HTTP(S)
protocol rather than TCP
.
The load balancer will then be responsible for managing SSL certificates and
terminating SSL.
Since communication between the load balancer and GitLab will not be secure, there is some additional configuration needed. See the NGINX proxied SSL documentation for details.
Configure your load balancer(s) to use the 'HTTP(S)' protocol rather than 'TCP'. The load balancer(s) will be responsible for managing SSL certificates that end users will see.
Traffic will also be secure between the load balancer(s) and NGINX in this scenario. There is no need to add configuration for proxied SSL since the connection will be secure all the way. However, configuration will need to be added to GitLab to configure SSL certificates. See NGINX HTTPS documentation for details on managing SSL certificates and configuring NGINX.
Ensure the external load balancer only routes to working services with built in monitoring endpoints. The readiness checks all require additional configuration on the nodes being checked, otherwise, the external load balancer will not be able to connect.
The basic ports to be used are shown in the table below.
LB Port | Backend Port | Protocol |
---|---|---|
80 | 80 | HTTP (1) |
443 | 443 | TCP or HTTPS (1) (2) |
22 | 22 | TCP |
- (1): Web terminal support requires
your load balancer to correctly handle WebSocket connections. When using
HTTP or HTTPS proxying, this means your load balancer must be configured
to pass through the
Connection
andUpgrade
hop-by-hop headers. See the web terminal integration guide for more details. - (2): When using HTTPS protocol for port 443, you will need to add an SSL certificate to the load balancers. If you wish to terminate SSL at the GitLab application server instead, use TCP protocol.
If you're using GitLab Pages with custom domain support you will need some
additional port configurations.
GitLab Pages requires a separate virtual IP address. Configure DNS to point the
pages_external_url
from /etc/gitlab/gitlab.rb
at the new virtual IP address. See the
GitLab Pages documentation for more information.
LB Port | Backend Port | Protocol |
---|---|---|
80 | Varies (1) | HTTP |
443 | Varies (1) | TCP (2) |
- (1): The backend port for GitLab Pages depends on the
gitlab_pages['external_http']
andgitlab_pages['external_https']
setting. See GitLab Pages documentation for more details. - (2): Port 443 for GitLab Pages should always use the TCP protocol. Users can configure custom domains with custom SSL, which would not be possible if SSL was terminated at the load balancer.
Some organizations have policies against opening SSH port 22. In this case, it may be helpful to configure an alternate SSH hostname that allows users to use SSH on port 443. An alternate SSH hostname will require a new virtual IP address compared to the other GitLab HTTP configuration above.
Configure DNS for an alternate SSH hostname such as altssh.gitlab.example.com
.
LB Port | Backend Port | Protocol |
---|---|---|
443 | 22 | TCP |
Using Redis in scalable environment is possible using a Primary x Replica topology with a Redis Sentinel service to watch and automatically start the failover procedure.
Redis requires authentication if used with Sentinel. See Redis Security documentation for more information. We recommend using a combination of a Redis password and tight firewall rules to secure your Redis service. You are highly encouraged to read the Redis Sentinel documentation before configuring Redis with GitLab to fully understand the topology and architecture.
In this section, you'll be guided through configuring an external Redis instance to be used with GitLab. The following IPs will be used as an example:
10.6.0.61
: Redis Primary10.6.0.62
: Redis Replica 110.6.0.63
: Redis Replica 2
Managed Redis from cloud providers such as AWS ElastiCache will work. If these services support high availability, be sure it is not the Redis Cluster type.
Redis version 5.0 or higher is required, as this is what ships with Omnibus GitLab packages starting with GitLab 13.0. Older Redis versions do not support an optional count argument to SPOP which is now required for Merge Trains.
Note the Redis node's IP address or hostname, port, and password (if required). These will be necessary when configuring the GitLab application servers later.
This is the section where we install and set up the new Redis instances.
The requirements for a Redis setup are the following:
- All Redis nodes must be able to talk to each other and accept incoming
connections over Redis (
6379
) and Sentinel (26379
) ports (unless you change the default ones). - The server that hosts the GitLab application must be able to access the Redis nodes.
- Protect the nodes from access from external networks (Internet), using a firewall.
Both the primary and replica Redis nodes need the same password defined in
redis['password']
. At any time during a failover, the Sentinels can reconfigure
a node and change its status from primary to replica (and vice versa).
-
SSH in to the Primary Redis server.
-
Download and install the Omnibus GitLab package of your choice. Be sure to both follow only installation steps 1 and 2 on the page, and to select the correct Omnibus GitLab package, with the same version and type (Community or Enterprise editions) as your current install.
-
Edit
/etc/gitlab/gitlab.rb
and add the contents:# Specify server role as 'redis_master_role' roles ['redis_master_role'] # IP address pointing to a local IP that the other machines can reach to. # You can also set bind to '0.0.0.0' which listen in all interfaces. # If you really need to bind to an external accessible IP, make # sure you add extra firewall rules to prevent unauthorized access. redis['bind'] = '10.6.0.61' # Define a port so Redis can listen for TCP requests which will allow other # machines to connect to it. redis['port'] = 6379 # Set up password authentication for Redis (use the same password in all nodes). redis['password'] = 'redis-password-goes-here' ## Enable service discovery for Prometheus consul['enable'] = true consul['monitoring_service_discovery'] = true ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100' redis_exporter['listen_address'] = '0.0.0.0:9121' redis_exporter['flags'] = { 'redis.addr' => 'redis://10.6.0.61:6379', 'redis.password' => 'redis-password-goes-here', } # Disable auto migrations gitlab_rails['auto_migrate'] = false
-
Reconfigure Omnibus GitLab for the changes to take effect.
You can specify multiple roles, like sentinel and Redis, as:
roles ['redis_sentinel_role', 'redis_master_role']
. Read more about
roles.
You can list the current Redis Primary, Replica status via:
/opt/gitlab/embedded/bin/redis-cli -h <host> -a 'redis-password-goes-here' info replication
Show running GitLab services via:
gitlab-ctl status
The output should be similar to the following:
run: consul: (pid 30043) 76863s; run: log: (pid 29691) 76892s
run: logrotate: (pid 31152) 3070s; run: log: (pid 29595) 76908s
run: node-exporter: (pid 30064) 76862s; run: log: (pid 29624) 76904s
run: redis: (pid 30070) 76861s; run: log: (pid 29573) 76914s
run: redis-exporter: (pid 30075) 76861s; run: log: (pid 29674) 76896s
-
SSH in to the replica Redis server.
-
Download and install the Omnibus GitLab package of your choice. Be sure to both follow only installation steps 1 and 2 on the page, and to select the correct Omnibus GitLab package, with the same version and type (Community or Enterprise editions) as your current install.
-
Edit
/etc/gitlab/gitlab.rb
and add the contents:# Specify server role as 'redis_replica_role' roles ['redis_replica_role'] # IP address pointing to a local IP that the other machines can reach to. # You can also set bind to '0.0.0.0' which listen in all interfaces. # If you really need to bind to an external accessible IP, make # sure you add extra firewall rules to prevent unauthorized access. redis['bind'] = '10.6.0.62' # Define a port so Redis can listen for TCP requests which will allow other # machines to connect to it. redis['port'] = 6379 # The same password for Redis authentication you set up for the primary node. redis['password'] = 'redis-password-goes-here' # The IP of the primary Redis node. redis['master_ip'] = '10.6.0.61' # Port of primary Redis server, uncomment to change to non default. Defaults # to `6379`. #redis['master_port'] = 6379 ## Enable service discovery for Prometheus consul['enable'] = true consul['monitoring_service_discovery'] = true ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100' redis_exporter['listen_address'] = '0.0.0.0:9121' redis_exporter['flags'] = { 'redis.addr' => 'redis://10.6.0.62:6379', 'redis.password' => 'redis-password-goes-here', } # Disable auto migrations gitlab_rails['auto_migrate'] = false
-
Reconfigure Omnibus GitLab for the changes to take effect.
-
Go through the steps again for all the other replica nodes, and make sure to set up the IPs correctly.
You can specify multiple roles, like sentinel and Redis, as:
roles ['redis_sentinel_role', 'redis_master_role']
. Read more about
roles.
These values don't have to be changed again in /etc/gitlab/gitlab.rb
after
a failover, as the nodes will be managed by the Sentinels, and even after a
gitlab-ctl reconfigure
, they will get their configuration restored by
the same Sentinels.
Advanced configuration options are supported and can be added if needed.
Now that the Redis servers are all set up, let's configure the Sentinel servers. The following IPs will be used as an example:
10.6.0.11
: Consul/Sentinel 110.6.0.12
: Consul/Sentinel 210.6.0.13
: Consul/Sentinel 3
NOTE: Note:
If you're using an external Redis Sentinel instance, be sure to exclude the
requirepass
parameter from the Sentinel configuration. This parameter causes
clients to report NOAUTH Authentication required.
.
Redis Sentinel 3.2.x doesn't support password authentication.
To configure the Sentinel:
-
SSH in to the server that will host Consul/Sentinel.
-
Download and install the Omnibus GitLab package of your choice. Be sure to both follow only installation steps 1 and 2 on the page, and to select the correct Omnibus GitLab package, with the same version and type (Community or Enterprise editions) as your current install.
-
Edit
/etc/gitlab/gitlab.rb
and add the contents:roles ['redis_sentinel_role', 'consul_role'] # Must be the same in every sentinel node redis['master_name'] = 'gitlab-redis' # The same password for Redis authentication you set up for the primary node. redis['master_password'] = 'redis-password-goes-here' # The IP of the primary Redis node. redis['master_ip'] = '10.6.0.61' # Define a port so Redis can listen for TCP requests which will allow other # machines to connect to it. redis['port'] = 6379 # Port of primary Redis server, uncomment to change to non default. Defaults # to `6379`. #redis['master_port'] = 6379 ## Configure Sentinel sentinel['bind'] = '10.6.0.11' # Port that Sentinel listens on, uncomment to change to non default. Defaults # to `26379`. # sentinel['port'] = 26379 ## Quorum must reflect the amount of voting sentinels it take to start a failover. ## Value must NOT be greater then the amount of sentinels. ## ## The quorum can be used to tune Sentinel in two ways: ## 1. If a the quorum is set to a value smaller than the majority of Sentinels ## we deploy, we are basically making Sentinel more sensible to primary failures, ## triggering a failover as soon as even just a minority of Sentinels is no longer ## able to talk with the primary. ## 1. If a quorum is set to a value greater than the majority of Sentinels, we are ## making Sentinel able to failover only when there are a very large number (larger ## than majority) of well connected Sentinels which agree about the primary being down.s sentinel['quorum'] = 2 ## Consider unresponsive server down after x amount of ms. # sentinel['down_after_milliseconds'] = 10000 ## Specifies the failover timeout in milliseconds. It is used in many ways: ## ## - The time needed to re-start a failover after a previous failover was ## already tried against the same primary by a given Sentinel, is two ## times the failover timeout. ## ## - The time needed for a replica replicating to a wrong primary according ## to a Sentinel current configuration, to be forced to replicate ## with the right primary, is exactly the failover timeout (counting since ## the moment a Sentinel detected the misconfiguration). ## ## - The time needed to cancel a failover that is already in progress but ## did not produced any configuration change (REPLICAOF NO ONE yet not ## acknowledged by the promoted replica). ## ## - The maximum time a failover in progress waits for all the replica to be ## reconfigured as replicas of the new primary. However even after this time ## the replicas will be reconfigured by the Sentinels anyway, but not with ## the exact parallel-syncs progression as specified. # sentinel['failover_timeout'] = 60000 ## Enable service discovery for Prometheus consul['enable'] = true consul['monitoring_service_discovery'] = true ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { server: true, retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100' redis_exporter['listen_address'] = '0.0.0.0:9121' # Disable auto migrations gitlab_rails['auto_migrate'] = false
-
Reconfigure Omnibus GitLab for the changes to take effect.
-
Go through the steps again for all the other Consul/Sentinel nodes, and make sure you set up the correct IPs.
A Consul leader is elected when the provisioning of the third Consul server is
complete. Viewing the Consul logs sudo gitlab-ctl tail consul
displays
...[INFO] consul: New leader elected: ...
.
You can list the current Consul members (server, client):
sudo /opt/gitlab/embedded/bin/consul members
You can verify the GitLab services are running:
sudo gitlab-ctl status
The output should be similar to the following:
run: consul: (pid 30074) 76834s; run: log: (pid 29740) 76844s
run: logrotate: (pid 30925) 3041s; run: log: (pid 29649) 76861s
run: node-exporter: (pid 30093) 76833s; run: log: (pid 29663) 76855s
run: sentinel: (pid 30098) 76832s; run: log: (pid 29704) 76850s
In this section, you'll be guided through configuring an external PostgreSQL database to be used with GitLab.
If you're hosting GitLab on a cloud provider, you can optionally use a managed service for PostgreSQL. For example, AWS offers a managed Relational Database Service (RDS) that runs PostgreSQL.
If you use a cloud-managed service, or provide your own PostgreSQL:
- Set up PostgreSQL according to the database requirements document.
- Set up a
gitlab
username with a password of your choice. Thegitlab
user needs privileges to create thegitlabhq_production
database. - Configure the GitLab application servers with the appropriate details. This step is covered in Configuring the GitLab Rails application.
See Configure GitLab using an external PostgreSQL service for further configuration steps.
The following IPs will be used as an example:
10.6.0.31
: PostgreSQL primary10.6.0.32
: PostgreSQL secondary 110.6.0.33
: PostgreSQL secondary 2
First, make sure to install
the Linux GitLab package on each node. Following the steps,
install the necessary dependencies from step 1, and add the
GitLab package repository from step 2. When installing GitLab
in the second step, do not supply the EXTERNAL_URL
value.
-
SSH in to the PostgreSQL primary node.
-
Generate a password hash for the PostgreSQL username/password pair. This assumes you will use the default username of
gitlab
(recommended). The command will request a password and confirmation. Use the value that is output by this command in the next step as the value of<postgresql_password_hash>
:sudo gitlab-ctl pg-password-md5 gitlab
-
Generate a password hash for the PgBouncer username/password pair. This assumes you will use the default username of
pgbouncer
(recommended). The command will request a password and confirmation. Use the value that is output by this command in the next step as the value of<pgbouncer_password_hash>
:sudo gitlab-ctl pg-password-md5 pgbouncer
-
Generate a password hash for the Consul database username/password pair. This assumes you will use the default username of
gitlab-consul
(recommended). The command will request a password and confirmation. Use the value that is output by this command in the next step as the value of<consul_password_hash>
:sudo gitlab-ctl pg-password-md5 gitlab-consul
-
On the primary database node, edit
/etc/gitlab/gitlab.rb
replacing values noted in the# START user configuration
section:# Disable all components except PostgreSQL and Repmgr and Consul roles ['postgres_role'] # PostgreSQL configuration postgresql['listen_address'] = '0.0.0.0' postgresql['hot_standby'] = 'on' postgresql['wal_level'] = 'replica' postgresql['shared_preload_libraries'] = 'repmgr_funcs' # Disable automatic database migrations gitlab_rails['auto_migrate'] = false # Configure the Consul agent consul['services'] = %w(postgresql) # START user configuration # Please set the real values as explained in Required Information section # # Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value postgresql['pgbouncer_user_password'] = '<pgbouncer_password_hash>' # Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value postgresql['sql_user_password'] = '<postgresql_password_hash>' # Set `max_wal_senders` to one more than the number of database nodes in the cluster. # This is used to prevent replication from using up all of the # available database connections. postgresql['max_wal_senders'] = 4 postgresql['max_replication_slots'] = 4 # Replace XXX.XXX.XXX.XXX/YY with Network Address postgresql['trust_auth_cidr_addresses'] = %w(127.0.0.1/32 10.6.0.0/24) repmgr['trust_auth_cidr_addresses'] = %w(127.0.0.1/32 10.6.0.0/24) ## Enable service discovery for Prometheus consul['enable'] = true consul['monitoring_service_discovery'] = true # Set the network addresses that the exporters will listen on for monitoring node_exporter['listen_address'] = '0.0.0.0:9100' postgres_exporter['listen_address'] = '0.0.0.0:9187' postgres_exporter['dbname'] = 'gitlabhq_production' postgres_exporter['password'] = '<postgresql_password_hash>' ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # # END user configuration
-
Reconfigure GitLab for the changes to take effect.
-
You can list the current PostgreSQL primary, secondary nodes status via:
sudo /opt/gitlab/bin/gitlab-ctl repmgr cluster show
-
Verify the GitLab services are running:
sudo gitlab-ctl status
The output should be similar to the following:
run: consul: (pid 30593) 77133s; run: log: (pid 29912) 77156s run: logrotate: (pid 23449) 3341s; run: log: (pid 29794) 77175s run: node-exporter: (pid 30613) 77133s; run: log: (pid 29824) 77170s run: postgres-exporter: (pid 30620) 77132s; run: log: (pid 29894) 77163s run: postgresql: (pid 30630) 77132s; run: log: (pid 29618) 77181s run: repmgrd: (pid 30639) 77132s; run: log: (pid 29985) 77150s
-
On both the secondary nodes, add the same configuration specified above for the primary node with an additional setting that will inform
gitlab-ctl
that they are standby nodes initially and there's no need to attempt to register them as a primary node:# Disable all components except PostgreSQL and Repmgr and Consul roles ['postgres_role'] # PostgreSQL configuration postgresql['listen_address'] = '0.0.0.0' postgresql['hot_standby'] = 'on' postgresql['wal_level'] = 'replica' postgresql['shared_preload_libraries'] = 'repmgr_funcs' # Disable automatic database migrations gitlab_rails['auto_migrate'] = false # Configure the Consul agent consul['services'] = %w(postgresql) # Specify if a node should attempt to be primary on initialization. repmgr['master_on_initialization'] = false # START user configuration # Please set the real values as explained in Required Information section # # Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value postgresql['pgbouncer_user_password'] = '<pgbouncer_password_hash>' # Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value postgresql['sql_user_password'] = '<postgresql_password_hash>' # Set `max_wal_senders` to one more than the number of database nodes in the cluster. # This is used to prevent replication from using up all of the # available database connections. postgresql['max_wal_senders'] = 4 postgresql['max_replication_slots'] = 4 # Replace XXX.XXX.XXX.XXX/YY with Network Address postgresql['trust_auth_cidr_addresses'] = %w(127.0.0.1/32 10.6.0.0/24) repmgr['trust_auth_cidr_addresses'] = %w(127.0.0.1/32 10.6.0.0/24) ## Enable service discovery for Prometheus consul['enable'] = true consul['monitoring_service_discovery'] = true # Set the network addresses that the exporters will listen on for monitoring node_exporter['listen_address'] = '0.0.0.0:9100' postgres_exporter['listen_address'] = '0.0.0.0:9187' postgres_exporter['dbname'] = 'gitlabhq_production' postgres_exporter['password'] = '<postgresql_password_hash>' ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # END user configuration
-
Reconfigure GitLab for the changes to take effect.
Advanced configuration options are supported and can be added if needed.
SSH in to the primary node:
-
Open a database prompt:
gitlab-psql -d gitlabhq_production
-
Enable the
pg_trgm
extension:CREATE EXTENSION pg_trgm;
-
Exit the database prompt by typing
\q
and Enter. -
Verify the cluster is initialized with one node:
gitlab-ctl repmgr cluster show
The output should be similar to the following:
Role | Name | Upstream | Connection String ----------+----------|----------|---------------------------------------- * master | HOSTNAME | | host=HOSTNAME user=gitlab_repmgr dbname=gitlab_repmgr
-
Note down the hostname or IP address in the connection string:
host=HOSTNAME
. We will refer to the hostname in the next section as<primary_node_name>
. If the value is not an IP address, it will need to be a resolvable name (via DNS or/etc/hosts
)
SSH in to the secondary node:
-
Set up the repmgr standby:
gitlab-ctl repmgr standby setup <primary_node_name>
Do note that this will remove the existing data on the node. The command has a wait time.
The output should be similar to the following:
Doing this will delete the entire contents of /var/opt/gitlab/postgresql/data If this is not what you want, hit Ctrl-C now to exit To skip waiting, rerun with the -w option Sleeping for 30 seconds Stopping the database Removing the data Cloning the data Starting the database Registering the node with the cluster ok: run: repmgrd: (pid 19068) 0s
Before moving on, make sure the databases are configured correctly. Run the following command on the primary node to verify that replication is working properly and the secondary nodes appear in the cluster:
gitlab-ctl repmgr cluster show
The output should be similar to the following:
Role | Name | Upstream | Connection String
----------+---------|-----------|------------------------------------------------
* master | MASTER | | host=<primary_node_name> user=gitlab_repmgr dbname=gitlab_repmgr
standby | STANDBY | MASTER | host=<secondary_node_name> user=gitlab_repmgr dbname=gitlab_repmgr
standby | STANDBY | MASTER | host=<secondary_node_name> user=gitlab_repmgr dbname=gitlab_repmgr
If the 'Role' column for any node says "FAILED", check the Troubleshooting section before proceeding.
Also, check that the repmgr-check-master
command works successfully on each node:
su - gitlab-consul
gitlab-ctl repmgr-check-master || echo 'This node is a standby repmgr node'
This command relies on exit codes to tell Consul whether a particular node is a master
or secondary. The most important thing here is that this command does not produce errors.
If there are errors it's most likely due to incorrect gitlab-consul
database user permissions.
Check the Troubleshooting section before proceeding.
Now that the PostgreSQL servers are all set up, let's configure PgBouncer. The following IPs will be used as an example:
10.6.0.21
: PgBouncer 110.6.0.22
: PgBouncer 210.6.0.23
: PgBouncer 3
-
On each PgBouncer node, edit
/etc/gitlab/gitlab.rb
, and replace<consul_password_hash>
and<pgbouncer_password_hash>
with the password hashes you set up previously:# Disable all components except Pgbouncer and Consul agent roles ['pgbouncer_role'] # Configure PgBouncer pgbouncer['admin_users'] = %w(pgbouncer gitlab-consul) pgbouncer['users'] = { 'gitlab-consul': { password: '<consul_password_hash>' }, 'pgbouncer': { password: '<pgbouncer_password_hash>' } } # Configure Consul agent consul['watchers'] = %w(postgresql) consul['enable'] = true consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13) } # Enable service discovery for Prometheus consul['monitoring_service_discovery'] = true # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100' pgbouncer_exporter['listen_address'] = '0.0.0.0:9188'
-
Reconfigure Omnibus GitLab for the changes to take effect.
-
Create a
.pgpass
file so Consul is able to reload PgBouncer. Enter the PgBouncer password twice when asked:gitlab-ctl write-pgpass --host 127.0.0.1 --database pgbouncer --user pgbouncer --hostuser gitlab-consul
-
Ensure each node is talking to the current master:
gitlab-ctl pgb-console # You will be prompted for PGBOUNCER_PASSWORD
If there is an error
psql: ERROR: Auth failed
after typing in the password, ensure you previously generated the MD5 password hashes with the correct format. The correct format is to concatenate the password and the username:PASSWORDUSERNAME
. For example,Sup3rS3cr3tpgbouncer
would be the text needed to generate an MD5 password hash for thepgbouncer
user. -
Once the console prompt is available, run the following queries:
show databases ; show clients ;
The output should be similar to the following:
name | host | port | database | force_user | pool_size | reserve_pool | pool_mode | max_connections | current_connections ---------------------+-------------+------+---------------------+------------+-----------+--------------+-----------+-----------------+--------------------- gitlabhq_production | MASTER_HOST | 5432 | gitlabhq_production | | 20 | 0 | | 0 | 0 pgbouncer | | 6432 | pgbouncer | pgbouncer | 2 | 0 | statement | 0 | 0 (2 rows) type | user | database | state | addr | port | local_addr | local_port | connect_time | request_time | ptr | link | remote_pid | tls ------+-----------+---------------------+---------+----------------+-------+------------+------------+---------------------+---------------------+-----------+------+------------+----- C | pgbouncer | pgbouncer | active | 127.0.0.1 | 56846 | 127.0.0.1 | 6432 | 2017-08-21 18:09:59 | 2017-08-21 18:10:48 | 0x22b3880 | | 0 | (2 rows)
-
Verify the GitLab services are running:
sudo gitlab-ctl status
The output should be similar to the following:
run: consul: (pid 31530) 77150s; run: log: (pid 31106) 77182s run: logrotate: (pid 32613) 3357s; run: log: (pid 30107) 77500s run: node-exporter: (pid 31550) 77149s; run: log: (pid 30138) 77493s run: pgbouncer: (pid 32033) 75593s; run: log: (pid 31117) 77175s run: pgbouncer-exporter: (pid 31558) 77148s; run: log: (pid 31498) 77156s
If you're running more than one PgBouncer node as recommended, then at this time you'll need to set up a TCP internal load balancer to serve each correctly.
The following IP will be used as an example:
10.6.0.20
: Internal Load Balancer
Here's how you could do it with HAProxy:
global
log /dev/log local0
log localhost local1 notice
log stdout format raw local0
defaults
log global
default-server inter 10s fall 3 rise 2
balance leastconn
frontend internal-pgbouncer-tcp-in
bind *:6432
mode tcp
option tcplog
default_backend pgbouncer
backend pgbouncer
mode tcp
option tcp-check
server pgbouncer1 10.6.0.21:6432 check
server pgbouncer2 10.6.0.22:6432 check
server pgbouncer3 10.6.0.23:6432 check
Refer to your preferred Load Balancer's documentation for further guidance.
NOTE: Note: Gitaly Cluster support for the Reference Architectures is being worked on as a collaborative effort between the Quality Engineering and Gitaly teams. When this component has been verified some Architecture specs will likely change as a result to support the new and improved designed.
Gitaly server node requirements are dependent on data, specifically the number of projects and those projects' sizes. It's recommended that a Gitaly server node stores no more than 5 TB of data. Depending on your repository storage requirements, you may require additional Gitaly server nodes.
Due to Gitaly having notable input and output requirements, we strongly recommend that all Gitaly nodes use solid-state drives (SSDs). These SSDs should have a throughput of at least 8,000 input/output operations per second (IOPS) for read operations and 2,000 IOPS for write operations. These IOPS values are initial recommendations, and may be adjusted to greater or lesser values depending on the scale of your environment's workload. If you're running the environment on a Cloud provider, refer to their documentation about how to configure IOPS correctly.
Be sure to note the following items:
- The GitLab Rails application shards repositories into repository storage paths.
- A Gitaly server can host one or more storage paths.
- A GitLab server can use one or more Gitaly server nodes.
- Gitaly addresses must be specified to be correctly resolvable for all Gitaly clients.
- Gitaly servers must not be exposed to the public internet, as Gitaly's network traffic is unencrypted by default. The use of a firewall is highly recommended to restrict access to the Gitaly server. Another option is to use TLS.
NOTE: Note: The token referred to throughout the Gitaly documentation is an arbitrary password selected by the administrator. This token is unrelated to tokens created for the GitLab API or other similar web API tokens.
This section describes how to configure two Gitaly servers, with the following IPs and domain names:
10.6.0.51
: Gitaly 1 (gitaly1.internal
)10.6.0.52
: Gitaly 2 (gitaly2.internal
)
Assumptions about your servers include having the secret token be gitalysecret
,
and that your GitLab installation has three repository storages:
default
on Gitaly 1storage1
on Gitaly 1storage2
on Gitaly 2
On each node:
-
Download and install the Omnibus GitLab package of your choice. Be sure to follow only installation steps 1 and 2 on the page, and do not provide the
EXTERNAL_URL
value. -
Edit the Gitaly server node's
/etc/gitlab/gitlab.rb
file to configure storage paths, enable the network listener, and to configure the token:# /etc/gitlab/gitlab.rb # Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests # to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API. # The following two values must be the same as their respective values # of the GitLab Rails application setup gitaly['auth_token'] = 'gitalysecret' gitlab_shell['secret_token'] = 'shellsecret' # Avoid running unnecessary services on the Gitaly server postgresql['enable'] = false redis['enable'] = false nginx['enable'] = false puma['enable'] = false unicorn['enable'] = false sidekiq['enable'] = false gitlab_workhorse['enable'] = false grafana['enable'] = false gitlab_exporter['enable'] = false # If you run a separate monitoring node you can disable these services alertmanager['enable'] = false prometheus['enable'] = false # Prevent database connections during 'gitlab-ctl reconfigure' gitlab_rails['rake_cache_clear'] = false gitlab_rails['auto_migrate'] = false # Configure the gitlab-shell API callback URL. Without this, `git push` will # fail. This can be your 'front door' GitLab URL or an internal load # balancer. # Don't forget to copy `/etc/gitlab/gitlab-secrets.json` from web server to Gitaly server. gitlab_rails['internal_api_url'] = 'https://gitlab.example.com' # Make Gitaly accept connections on all network interfaces. You must use # firewalls to restrict access to this address/port. # Comment out following line if you only want to support TLS connections gitaly['listen_addr'] = "0.0.0.0:8075" ## Enable service discovery for Prometheus consul['enable'] = true consul['monitoring_service_discovery'] = true # Set the network addresses that the exporters will listen on for monitoring gitaly['prometheus_listen_addr'] = "0.0.0.0:9236" node_exporter['listen_address'] = '0.0.0.0:9100' gitlab_rails['prometheus_address'] = '10.6.0.81:9090' ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), }
-
Append the following to
/etc/gitlab/gitlab.rb
for each respective server:-
On
gitaly1.internal
:git_data_dirs({ 'default' => { 'path' => '/var/opt/gitlab/git-data' }, 'storage1' => { 'path' => '/mnt/gitlab/git-data' }, })
-
On
gitaly2.internal
:git_data_dirs({ 'storage2' => { 'path' => '/mnt/gitlab/git-data' }, })
-
-
Save the file, and then reconfigure GitLab.
-
Confirm that Gitaly can perform callbacks to the internal API:
sudo /opt/gitlab/embedded/bin/gitaly-hooks check /var/opt/gitlab/gitaly/config.toml
-
Verify the GitLab services are running:
sudo gitlab-ctl status
The output should be similar to the following:
run: consul: (pid 30339) 77006s; run: log: (pid 29878) 77020s run: gitaly: (pid 30351) 77005s; run: log: (pid 29660) 77040s run: logrotate: (pid 7760) 3213s; run: log: (pid 29782) 77032s run: node-exporter: (pid 30378) 77004s; run: log: (pid 29812) 77026s
Gitaly supports TLS encryption. To be able to communicate
with a Gitaly instance that listens for secure connections you will need to use tls://
URL
scheme in the gitaly_address
of the corresponding storage entry in the GitLab configuration.
You will need to bring your own certificates as this isn't provided automatically. The certificate, or its certificate authority, must be installed on all Gitaly nodes (including the Gitaly node using the certificate) and on all client nodes that communicate with it following the procedure described in GitLab custom certificate configuration.
NOTE: Note: The self-signed certificate must specify the address you use to access the Gitaly server. If you are addressing the Gitaly server by a hostname, you can either use the Common Name field for this, or add it as a Subject Alternative Name. If you are addressing the Gitaly server by its IP address, you must add it as a Subject Alternative Name to the certificate. gRPC does not support using an IP address as Common Name in a certificate.
It's possible to configure Gitaly servers with both an unencrypted listening
address (listen_addr
) and an encrypted listening address (tls_listen_addr
)
at the same time. This allows you to do a gradual transition from unencrypted to
encrypted traffic, if necessary.
To configure Gitaly with TLS:
-
Create the
/etc/gitlab/ssl
directory and copy your key and certificate there:sudo mkdir -p /etc/gitlab/ssl sudo chmod 755 /etc/gitlab/ssl sudo cp key.pem cert.pem /etc/gitlab/ssl/ sudo chmod 644 key.pem cert.pem
-
Copy the cert to
/etc/gitlab/trusted-certs
so Gitaly will trust the cert when calling into itself:sudo cp /etc/gitlab/ssl/cert.pem /etc/gitlab/trusted-certs/
-
Edit
/etc/gitlab/gitlab.rb
and add:gitaly['tls_listen_addr'] = "0.0.0.0:9999" gitaly['certificate_path'] = "/etc/gitlab/ssl/cert.pem" gitaly['key_path'] = "/etc/gitlab/ssl/key.pem"
-
Delete
gitaly['listen_addr']
to allow only encrypted connections. -
Save the file and reconfigure GitLab.
Sidekiq requires connection to the Redis, PostgreSQL and Gitaly instance. The following IPs will be used as an example:
10.6.0.71
: Sidekiq 110.6.0.72
: Sidekiq 210.6.0.73
: Sidekiq 310.6.0.74
: Sidekiq 4
To configure the Sidekiq nodes, one each one:
-
SSH in to the Sidekiq server.
-
Download and install the Omnibus GitLab package of your choice. Be sure to follow only installation steps 1 and 2 on the page.
-
Open
/etc/gitlab/gitlab.rb
with your editor:######################################## ##### Services Disabled ### ######################################## nginx['enable'] = false grafana['enable'] = false prometheus['enable'] = false gitlab_rails['auto_migrate'] = false alertmanager['enable'] = false gitaly['enable'] = false gitlab_workhorse['enable'] = false nginx['enable'] = false puma['enable'] = false postgres_exporter['enable'] = false postgresql['enable'] = false redis['enable'] = false redis_exporter['enable'] = false gitlab_exporter['enable'] = false ######################################## #### Redis ### ######################################## ## Must be the same in every sentinel node redis['master_name'] = 'gitlab-redis' ## The same password for Redis authentication you set up for the master node. redis['master_password'] = '<redis_primary_password>' ## A list of sentinels with `host` and `port` gitlab_rails['redis_sentinels'] = [ {'host' => '10.6.0.11', 'port' => 26379}, {'host' => '10.6.0.12', 'port' => 26379}, {'host' => '10.6.0.13', 'port' => 26379}, ] ####################################### ### Gitaly ### ####################################### git_data_dirs({ 'default' => { 'gitaly_address' => 'tcp://gitaly1.internal:8075' }, 'storage1' => { 'gitaly_address' => 'tcp://gitaly1.internal:8075' }, 'storage2' => { 'gitaly_address' => 'tcp://gitaly2.internal:8075' }, }) gitlab_rails['gitaly_token'] = 'YOUR_TOKEN' ####################################### ### Postgres ### ####################################### gitlab_rails['db_host'] = '10.6.0.20' # internal load balancer IP gitlab_rails['db_port'] = 6432 gitlab_rails['db_password'] = '<postgresql_user_password>' gitlab_rails['db_adapter'] = 'postgresql' gitlab_rails['db_encoding'] = 'unicode' gitlab_rails['auto_migrate'] = false ####################################### ### Sidekiq configuration ### ####################################### sidekiq['listen_address'] = "0.0.0.0" ####################################### ### Monitoring configuration ### ####################################### consul['enable'] = true consul['monitoring_service_discovery'] = true consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13) } # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100' # Rails Status for prometheus gitlab_rails['monitoring_whitelist'] = ['10.6.0.81/32', '127.0.0.0/8'] gitlab_rails['prometheus_address'] = '10.6.0.81:9090'
-
Save the file and reconfigure GitLab.
-
Verify the GitLab services are running:
sudo gitlab-ctl status
The output should be similar to the following:
run: consul: (pid 30114) 77353s; run: log: (pid 29756) 77367s run: logrotate: (pid 9898) 3561s; run: log: (pid 29653) 77380s run: node-exporter: (pid 30134) 77353s; run: log: (pid 29706) 77372s run: sidekiq: (pid 30142) 77351s; run: log: (pid 29638) 77386s
TIP: Tip: You can also run multiple Sidekiq processes.
This section describes how to configure the GitLab application (Rails) component.
In our architecture, we run each GitLab Rails node using the Puma webserver, and have its number of workers set to 90% of available CPUs, with four threads. For nodes running Rails with other components, the worker value should be reduced accordingly. We've determined that a worker value of 50% achieves a good balance, but this is dependent on workload.
On each node perform the following:
-
If you're using NFS:
-
If necessary, install the NFS client utility packages using the following commands:
# Ubuntu/Debian apt-get install nfs-common # CentOS/Red Hat yum install nfs-utils nfs-utils-lib
-
Specify the necessary NFS mounts in
/etc/fstab
. The exact contents of/etc/fstab
will depend on how you chose to configure your NFS server. See the NFS documentation for examples and the various options. -
Create the shared directories. These may be different depending on your NFS mount locations.
mkdir -p /var/opt/gitlab/.ssh /var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/git-data
-
-
Download and install the Omnibus GitLab package of your choice. Be sure to follow only installation steps 1 and 2 on the page.
-
Create or edit
/etc/gitlab/gitlab.rb
and use the following configuration. To maintain uniformity of links across nodes, theexternal_url
on the application server should point to the external URL that users will use to access GitLab. This would be the URL of the external load balancer which will route traffic to the GitLab application server:external_url 'https://gitlab.example.com' # Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests # to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API. # The following two values must be the same as their respective values # of the Gitaly setup gitlab_rails['gitaly_token'] = 'gitalysecret' gitlab_shell['secret_token'] = 'shellsecret' git_data_dirs({ 'default' => { 'gitaly_address' => 'tcp://gitaly1.internal:8075' }, 'storage1' => { 'gitaly_address' => 'tcp://gitaly1.internal:8075' }, 'storage2' => { 'gitaly_address' => 'tcp://gitaly2.internal:8075' }, }) ## Disable components that will not be on the GitLab application server roles ['application_role'] gitaly['enable'] = false nginx['enable'] = true sidekiq['enable'] = false ## PostgreSQL connection details # Disable PostgreSQL on the application node postgresql['enable'] = false gitlab_rails['db_host'] = '10.6.0.20' # internal load balancer IP gitlab_rails['db_port'] = 6432 gitlab_rails['db_password'] = '<postgresql_user_password>' gitlab_rails['auto_migrate'] = false ## Redis connection details ## Must be the same in every sentinel node redis['master_name'] = 'gitlab-redis' ## The same password for Redis authentication you set up for the Redis primary node. redis['master_password'] = '<redis_primary_password>' ## A list of sentinels with `host` and `port` gitlab_rails['redis_sentinels'] = [ {'host' => '10.6.0.11', 'port' => 26379}, {'host' => '10.6.0.12', 'port' => 26379}, {'host' => '10.6.0.13', 'port' => 26379} ] ## Enable service discovery for Prometheus consul['enable'] = true consul['monitoring_service_discovery'] = true # Set the network addresses that the exporters used for monitoring will listen on node_exporter['listen_address'] = '0.0.0.0:9100' gitlab_workhorse['prometheus_listen_addr'] = '0.0.0.0:9229' sidekiq['listen_address'] = "0.0.0.0" puma['listen'] = '0.0.0.0' ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # Add the monitoring node's IP address to the monitoring whitelist and allow it to # scrape the NGINX metrics gitlab_rails['monitoring_whitelist'] = ['10.6.0.81/32', '127.0.0.0/8'] nginx['status']['options']['allow'] = ['10.6.0.81/32', '127.0.0.0/8'] gitlab_rails['prometheus_address'] = '10.6.0.81:9090' ## Uncomment and edit the following options if you have set up NFS ## ## Prevent GitLab from starting if NFS data mounts are not available ## #high_availability['mountpoint'] = '/var/opt/gitlab/git-data' ## ## Ensure UIDs and GIDs match between servers for permissions via NFS ## #user['uid'] = 9000 #user['gid'] = 9000 #web_server['uid'] = 9001 #web_server['gid'] = 9001 #registry['uid'] = 9002 #registry['gid'] = 9002
-
If you're using Gitaly with TLS support, make sure the
git_data_dirs
entry is configured withtls
instead oftcp
:git_data_dirs({ 'default' => { 'gitaly_address' => 'tls://gitaly1.internal:9999' }, 'storage1' => { 'gitaly_address' => 'tls://gitaly1.internal:9999' }, 'storage2' => { 'gitaly_address' => 'tls://gitaly2.internal:9999' }, })
-
Copy the cert into
/etc/gitlab/trusted-certs
:sudo cp cert.pem /etc/gitlab/trusted-certs/
-
-
Save the file and reconfigure GitLab.
-
Run
sudo gitlab-rake gitlab:gitaly:check
to confirm the node can connect to Gitaly. -
Tail the logs to see the requests:
sudo gitlab-ctl tail gitaly
-
Save the
/etc/gitlab/gitlab-secrets.json
file from one of the two application nodes and install it on the other application node, the Gitaly node and the Sidekiq node and reconfigure GitLab. -
Verify the GitLab services are running:
sudo gitlab-ctl status
The output should be similar to the following:
run: consul: (pid 4890) 8647s; run: log: (pid 29962) 79128s run: gitlab-exporter: (pid 4902) 8647s; run: log: (pid 29913) 79134s run: gitlab-workhorse: (pid 4904) 8646s; run: log: (pid 29713) 79155s run: logrotate: (pid 12425) 1446s; run: log: (pid 29798) 79146s run: nginx: (pid 4925) 8646s; run: log: (pid 29726) 79152s run: node-exporter: (pid 4931) 8645s; run: log: (pid 29855) 79140s run: puma: (pid 4936) 8645s; run: log: (pid 29656) 79161s
When you specify https
in the external_url
, as in the previous example,
GitLab expects that the SSL certificates are in /etc/gitlab/ssl/
. If the
certificates aren't present, NGINX will fail to start. For more information, see
the NGINX documentation.
-
Ensure that all migrations ran:
gitlab-rake gitlab:db:configure
If you encounter a
rake aborted!
error message stating that PgBouncer is failing to connect to PostgreSQL, it may be that your PgBouncer node's IP address is missing from PostgreSQL'strust_auth_cidr_addresses
ingitlab.rb
on your database nodes. Before proceeding, see PgBouncer errorERROR: pgbouncer cannot connect to server
. -
Configure fast lookup of authorized SSH keys in the database.
The Omnibus GitLab package can be used to configure a standalone Monitoring node running Prometheus and Grafana:
-
SSH in to the Monitoring node.
-
Download and install the Omnibus GitLab package of your choice. Be sure to follow only installation steps 1 and 2 on the page.
-
Edit
/etc/gitlab/gitlab.rb
and add the contents:external_url 'http://gitlab.example.com' # Disable all other services gitlab_rails['auto_migrate'] = false alertmanager['enable'] = false gitaly['enable'] = false gitlab_exporter['enable'] = false gitlab_workhorse['enable'] = false nginx['enable'] = true postgres_exporter['enable'] = false postgresql['enable'] = false redis['enable'] = false redis_exporter['enable'] = false sidekiq['enable'] = false puma['enable'] = false unicorn['enable'] = false node_exporter['enable'] = false gitlab_exporter['enable'] = false # Enable Prometheus prometheus['enable'] = true prometheus['listen_address'] = '0.0.0.0:9090' prometheus['monitor_kubernetes'] = false # Enable Login form grafana['disable_login_form'] = false # Enable Grafana grafana['enable'] = true grafana['admin_password'] = '<grafana_password>' # Enable service discovery for Prometheus consul['enable'] = true consul['monitoring_service_discovery'] = true consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13) }
-
Save the file and reconfigure GitLab.
-
In the GitLab UI, set
admin/application_settings/metrics_and_profiling
> Metrics - Grafana to/-/grafana
tohttp[s]://<MONITOR NODE>/-/grafana
. -
Verify the GitLab services are running:
sudo gitlab-ctl status
The output should be similar to the following:
run: consul: (pid 31637) 17337s; run: log: (pid 29748) 78432s run: grafana: (pid 31644) 17337s; run: log: (pid 29719) 78438s run: logrotate: (pid 31809) 2936s; run: log: (pid 29581) 78462s run: nginx: (pid 31665) 17335s; run: log: (pid 29556) 78468s run: prometheus: (pid 31672) 17335s; run: log: (pid 29633) 78456s
GitLab supports using an object storage service for holding numerous types of data. It's recommended over NFS and in general it's better in larger setups as object storage is typically much more performant, reliable, and scalable.
GitLab has been tested on a number of object storage providers:
- Amazon S3
- Google Cloud Storage
- Digital Ocean Spaces
- Oracle Cloud Infrastructure
- Openstack Swift
- Azure Blob storage
- On-premises hardware and appliances from various storage vendors.
- MinIO. We have a guide to deploying this within our Helm Chart documentation.
There are two ways of specifying object storage configuration in GitLab:
- Consolidated form: A single credential is shared by all supported object types.
- Storage-specific form: Every object defines its own object storage connection and configuration.
Starting with GitLab 13.2, consolidated object storage configuration is available. It simplifies your GitLab configuration since the connection details are shared across object types. Refer to Consolidated object storage configuration guide for instructions on how to set it up.
For configuring object storage in GitLab 13.1 and earlier, or for storage types not supported by consolidated configuration form, refer to the following guides based on what features you intend to use:
Object storage type | Supported by consolidated configuration? |
---|---|
Backups | No |
Job artifacts including archived job logs | Yes |
LFS objects | Yes |
Uploads | Yes |
Container Registry (optional feature) | No |
Merge request diffs | Yes |
Mattermost | No |
Packages (optional feature) | Yes |
Dependency Proxy (optional feature) | Yes |
Pseudonymizer (optional feature) (ULTIMATE ONLY) | No |
Autoscale runner caching (optional for improved performance) | No |
Terraform state files | Yes |
Using separate buckets for each data type is the recommended approach for GitLab.
A limitation of our configuration is that each use of object storage is separately configured. We have an issue for improving this and easily using one bucket with separate folders is one improvement that this might bring.
There is at least one specific issue with using the same bucket: when GitLab is deployed with the Helm chart restore from backup will not properly function unless separate buckets are used.
One risk of using a single bucket would be if your organization decided to migrate GitLab to the Helm deployment in the future. GitLab would run, but the situation with backups might not be realized until the organization had a critical requirement for the backups to work.
You can leverage Elasticsearch and enable Advanced Search for faster, more advanced code search across your entire GitLab instance.
Elasticsearch cluster design and requirements are dependent on your specific data. For recommended best practices about how to set up your Elasticsearch cluster alongside your instance, read how to choose the optimal cluster configuration.
Object storage, along with Gitaly are recommended over NFS wherever possible for improved performance. If you intend to use GitLab Pages, this currently requires NFS.
See how to configure NFS.
See the troubleshooting documentation.