-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhour_logs.txt
44 lines (29 loc) · 2.09 KB
/
hour_logs.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Line1 : Number Correct by hour
Line2 : Total by hour
Patient 1:
0.43, 0.39, 0.36, 0.31, 0.43, 0.39, 0.34, 0.29, 0.22, 0.26, 0.27, 0.35, 0.38, 0.37, 0.37, 0.24, 0.4, 0.24, 0.28, 0.38, 0.38, 0.36, 0.37, 0.41
420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 459, 480, 480, 480, 480, 480
Patient 2:
0.63, 0.71, 0.7, 0.56, 0.68, 0.68, 0.61, 0.48, 0.69, 0.59, 0.56, 0.58, 0.5, 0.49, 0.4, 0.5, 0.49, 0.32, 0.31, 0.64, 0.87, 0.69, 0.72, 0.71
180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 228, 240, 240, 185, 180, 180, 180, 180, 180, 180, 180
patient 3:
0.3, 0.32, 0.32, 0.31, 0.31, 0.29, 0.3, 0.29, 0.28, 0.29, 0.28, 0.29, 0.29, 0.28, 0.28, 0.27, 0.27, 0.27, 0.27, 0.28, 0.29, 0.28, 0.3, 0.28
1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1484, 1499, 1500, 1553, 1560, 1560, 1560, 1560, 1560, 1507, 1500, 1500, 1500
patient 5:
0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.07, 0.07, 0.07, 0.07, 0.07, 0.06, 0.06, 0.06, 0.06, 0.12, 0.08, 0.06, 0.06
960, 960, 960, 960, 960, 960, 960, 960, 960, 960, 960, 917, 900, 900, 900, 900, 931, 960, 1006, 1020, 1020, 1020, 1020, 1020
patient 7:
1.0, 0.99, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.99, 0.99, 0.98, 0.97, 1.0, 0.99, 0.98, 1.0, 1.0, 0.94, 0.98, 1.0, 1.0, 1.0
300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 346, 360, 340, 300, 300, 300, 300, 300, 300
doscourage volatility
add previous labels as
L_t = \lambda p(d | x) + (1-\lambda)h_{t-n}
previous predictions for the patients included in the model
sliding window approach:
Only include those within certain sliding time windows in the training
30 minute windowa in both directions
plot precision and recall curves with varying time windows
Data point for research - denser annotations, is the patient delerious by hour.
Figure out the feature importance
DemogRphics as a parameter of the training
stroke location as a data point