forked from humanlayer/humanlayer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04-human_as_tool_linkedin.py
144 lines (117 loc) · 4.08 KB
/
04-human_as_tool_linkedin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from datetime import datetime
import langchain_core.tools as langchain_tools
from dotenv import load_dotenv
from langchain.agents import AgentType, initialize_agent
from langchain_openai import ChatOpenAI
from pydantic import BaseModel
from channels import (
dm_with_ceo,
)
from humanlayer.core.approval import (
HumanLayer,
)
load_dotenv()
hl = HumanLayer(
verbose=True,
# run_id is optional -it can be used to identify the agent in approval history
run_id="langchain-linkedin",
)
task_prompt = """
You are the linkedin inbox assistant. You check on
the CEO's linkedin inbox and decide if there are any messages
that seem interesting, then contact the human in slack with a summary.
don't provide detail on spam-looking messages, or messages
that appear to be selling a service or software
You can offer to perform actions like schedule time.
Example slack dm to send:
Your inbox for today includes 4 spam messages,
and 1 message from Devin who seems interested in your
product - [here's the link](https://linkedin.com/in/devin).
Terri has still not responded to your question about scheduling an onboarding call.
Would you like me to respond to Devin with your availability?
"""
class LinkedInMessage(BaseModel):
from_name: str
date: str
message: str
class LinkedInThread(BaseModel):
thread_id: str
thread_url: str
with_name: str
messages: list[LinkedInMessage]
def get_time() -> str:
"""get the current time"""
return datetime.now().isoformat()
def get_linkedin_threads() -> list[LinkedInThread]:
"""get the linkedin threads in the inbox"""
return [
LinkedInThread(
thread_id="123",
thread_url="https://linkedin.com/_fake/msg/123",
with_name="Danny",
messages=[
LinkedInMessage(
message="Hello, i am wondering if you are interested to try our excellent offshore "
"developer service",
from_name="Danny",
date="2024-08-17",
)
],
),
LinkedInThread(
thread_id="124",
with_name="Sarah",
thread_url="https://linkedin.com/_fake/msg/124",
messages=[
LinkedInMessage(
message="Hello, I am interested in your product, what's the best way to get started",
from_name="Sarah",
date="2024-08-16",
)
],
),
LinkedInThread(
thread_id="125",
with_name="Terri",
thread_url="https://linkedin.com/_fake/msg/125",
messages=[
LinkedInMessage(
message="Hello, I am interested in your product, what's the best way to get started",
from_name="Terri",
date="2024-08-12",
),
LinkedInMessage(
message="I would be happy to give you a demo - please let me know when you're "
"available, or you can book time at http://calendly.com/im-the-ceo",
from_name="you",
date="2024-08-12",
),
],
),
]
@hl.require_approval(contact_channel=dm_with_ceo)
def send_linkedin_message(thread_id: str, to_name: str, msg: str) -> str:
"""send a message in a thread in LinkedIn"""
return f"message successfully sent to {to_name}"
tools = [
langchain_tools.StructuredTool.from_function(get_linkedin_threads),
langchain_tools.StructuredTool.from_function(send_linkedin_message),
langchain_tools.StructuredTool.from_function(
# allow the agent to contact the CEO
hl.human_as_tool(
contact_channel=dm_with_ceo,
)
),
]
llm = ChatOpenAI(model="gpt-4o", temperature=0)
agent = initialize_agent(
tools=tools,
llm=llm,
agent=AgentType.OPENAI_FUNCTIONS,
verbose=True,
handle_parsing_errors=True,
)
if __name__ == "__main__":
result = agent.run(task_prompt)
print("\n\n----------Result----------\n\n")
print(result)