forked from humanlayer/humanlayer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02-imperative_fetch.py
174 lines (149 loc) · 5.17 KB
/
02-imperative_fetch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Below is an example of how to use humanlayer imperatively
# in your own hand-rolled loop or even outside the context
# of an agentic tool-calling loop.
#
# we run
# spec = FunctionCallSpec(fn="multiply", kwargs={"x": 2, "y": 5})
# status: = hl.fetch_approval(spec=spec)
#
# which executes the entire approval loop and returns a
#
# FunctionCallStatus.Approved | FunctionCallStatus.Rejected
#
# which have things like
#
# approved: bool = status.approved
# comment: str = status.comment
#
#
import json
import logging
from dotenv import load_dotenv
from openai import OpenAI
from humanlayer import HumanLayer
from humanlayer.core.models import FunctionCallSpec, FunctionCallStatus
load_dotenv()
hl = HumanLayer(
verbose=True,
# run_id is optional -it can be used to identify the agent in approval history
run_id="openai-imperative-fetch",
)
PROMPT = "multiply 2 and 5, then add 32 to the result"
def add(x: int, y: int) -> int:
"""Add two numbers together."""
return x + y
# look ma no decorators
def multiply(x: int, y: int) -> int:
"""multiply two numbers"""
return x * y
math_tools_map = {
"add": add,
"multiply": multiply,
}
math_tools_openai = [
{
"type": "function",
"function": {
"name": "add",
"description": "Add two numbers together.",
"parameters": {
"type": "object",
"properties": {
"x": {"type": "number"},
"y": {"type": "number"},
},
"required": ["x", "y"],
},
},
},
{
"type": "function",
"function": {
"name": "multiply",
"description": "multiply two numbers",
"parameters": {
"type": "object",
"properties": {
"x": {"type": "number"},
"y": {"type": "number"},
},
"required": ["x", "y"],
},
},
},
]
logger = logging.getLogger(__name__)
def run_chain(prompt: str, tools_openai: list[dict], tools_map: dict) -> str:
client = OpenAI()
messages = [{"role": "user", "content": prompt}]
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=tools_openai,
tool_choice="auto",
)
while response.choices[0].finish_reason != "stop":
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
if tool_calls:
messages.append(response_message) # extend conversation with assistant's reply
logger.info(
"last message led to %s tool calls: %s",
len(tool_calls),
[(tool_call.function.name, tool_call.function.arguments) for tool_call in tool_calls],
)
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = tools_map[function_name]
function_args = json.loads(tool_call.function.arguments)
logger.info("CALL tool %s with %s", function_name, function_args)
resp: FunctionCallStatus.Approved | FunctionCallStatus.Rejected = hl.fetch_approval(
FunctionCallSpec(
fn=function_name,
kwargs=function_args,
)
).as_completed()
if resp.approved is not True:
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": f"User rejected the tool call with comment: {resp.comment}",
}
)
continue
function_response_json: str
try:
function_response = function_to_call(**function_args)
function_response_json = json.dumps(function_response)
except Exception as e:
function_response_json = json.dumps(
{
"error": str(e),
}
)
logger.info(
"tool %s responded with %s",
function_name,
function_response_json[:200],
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response_json,
}
) # extend conversation with function response
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=tools_openai,
)
return response.choices[0].message.content
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
result = run_chain(PROMPT, math_tools_openai, math_tools_map)
print("\n\n----------Result----------\n\n")
print(result)