forked from humanlayer/humanlayer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03-imperative_fetch_based.py
186 lines (163 loc) · 6.08 KB
/
03-imperative_fetch_based.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# look. i get it. sometimes you hate frameworks
#
# if you're a top-tier extra-based AI engineer,
# you're probably thinking
# "i can just use the chat completions api."
# "I don't need to import 20k lines of framework bloat just to get one 150-line while loop"
# "Heck. Gimme the unfiltered raw API. I'm a big kid now."
#
# Welcome. We're glad you're here.
#
# Below is an example of how to use humanlayer imperatively
# in your own hand-rolled loop or even outside the context
# of an agentic tool-calling loop.
#
# For example
#
# hl.create(call: FunctionCall) -> FunctionCall
#
# call = hl.get(call_id: str) -> FunctionCall
# while call.approved is None:
# asyncio.sleep(5) # i don't know, roll your own loop however you want
# call = hl.get(call_id)
# if call.approved:
# return functions[call.fn](**call.kwargs)
# else:
# raise Exception(f"call {call.fn} not approved")
#
#
#
# Go ahead. Take the reins off. You're an adult, you can do whatever you want, and you earned this.
#
# . stay based friend
#
import json
import logging
import time
from dotenv import load_dotenv
from openai import OpenAI
from humanlayer import HumanLayer
from humanlayer.core.models import FunctionCallSpec
load_dotenv()
hl = HumanLayer(
verbose=True,
# run_id is optional -it can be used to identify the agent in approval history
run_id="openai-imperative-fetch-03",
)
PROMPT = "multiply 2 and 5, then add 32 to the result"
def add(x: int, y: int) -> int:
"""Add two numbers together."""
return x + y
def multiply(x: int, y: int) -> int:
"""multiply two numbers"""
return x * y
math_tools_openai = [
{
"type": "function",
"function": {
"name": "add",
"description": "Add two numbers together.",
"parameters": {
"type": "object",
"properties": {
"x": {"type": "number"},
"y": {"type": "number"},
},
"required": ["x", "y"],
},
},
},
{
"type": "function",
"function": {
"name": "multiply",
"description": "multiply two numbers",
"parameters": {
"type": "object",
"properties": {
"x": {"type": "number"},
"y": {"type": "number"},
},
"required": ["x", "y"],
},
},
},
]
logger = logging.getLogger(__name__)
def run_chain(prompt: str, tools_openai: list[dict]) -> str:
client = OpenAI()
messages = [{"role": "user", "content": prompt}]
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=tools_openai,
tool_choice="auto",
)
while response.choices[0].finish_reason != "stop":
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
if tool_calls:
messages.append(response_message) # extend conversation with assistant's reply
logger.info(
"last message led to %s tool calls: %s",
len(tool_calls),
[(tool_call.function.name, tool_call.function.arguments) for tool_call in tool_calls],
)
for tool_call in tool_calls:
function_name = tool_call.function.name
function_args = json.loads(tool_call.function.arguments)
function_response_json: str
# who needs hash maps? switch statements are the purest form of polymorphism
if function_name == "add":
logger.info("CALL tool %s with %s", function_name, function_args)
function_result = add(**function_args)
function_response_json = json.dumps(function_result)
# you're in charge now. go forth and multiply
elif function_name == "multiply":
logger.info("CALL tool %s with %s", function_name, function_args)
call = hl.create_function_call(
spec=FunctionCallSpec(
fn="multiply",
kwargs=function_args,
),
# call_id is optional but you can supply it if you want,
# in this case the openai tool_call_id is a natural choice
call_id=tool_call.id,
)
# loop until the call is approved
while (not call.status) or (call.status.approved is None):
time.sleep(5)
call = hl.get_function_call(call_id=tool_call.id)
if call.status.approved:
function_result = multiply(**function_args)
function_response_json = json.dumps(function_result)
else:
function_response_json = json.dumps(
{"error": f"call {call.spec.fn} not approved, comment was {call.status.comment}"}
)
else:
raise Exception(f"unknown function {function_name}") # noqa: TRY002
logger.info(
"tool %s responded with %s",
function_name,
function_response_json[:200],
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response_json,
}
) # extend conversation with function response
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=tools_openai,
)
return response.choices[0].message.content
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
result = run_chain(PROMPT, math_tools_openai)
print("\n\n----------Result----------\n\n")
print(result)