-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChapter_4.R
141 lines (111 loc) · 5.2 KB
/
Chapter_4.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# ===========================================================================================
# Simple Fixed Effects Evidence Synthesis Example -------------------------
# ===========================================================================================
# Example found in Evidence Synthesis for Medical Decision Making, Example 4.1, pages 78-81.
# Set working directory - best practice for when saving model files etc.
# setwd(getwd())
# Load jags package:
library(rjags)
library(R2jags)
# Load post-inspection utilities:
library(bayesplot)
library(ggplot2)
library(magrittr)
# Declare model logic in a string:
modelString <- "model {
# Sampling model/likelihood:
for (i in 1:Nstud) {
P[i] <- 1/V[i]
Y[i] ~ dnorm(d, P[i])
}
# Prior:
d ~ dnorm(0, 1.0e-5)
# Converting pooled LOR (d) to standard OR:
OR <- exp(d)
}"
# Convert and save object string to current directory. Note: make sure directory is set,
# otherwise R will not be able to find it, as it saves file outside the current environment:
writeLines(text = modelString, con = "ExModel.txt")
# Import mean data variables to be used in simulation:
jags_Data <- list(Y = c(-.3289, -.3845, -.2196, -.2222, -.2255, .1246, -.1110),
V = c(.0389, .0412, .0205, .0648, .0352, .0096, .0015), Nstud = 7)
# Declare starting Markov Chain Monte Carlo values. I.e. where the initial sampler starts in
# the 'sample space'. Note that starting values can also be given randomised distributions,
# which is best practice when conducting large, complex models to help avoid autocorrelation:
inits <- list(d = 0)
# Run Jags model, setting the number of simulations to 10000, throwing away 5000 samples from
# this, due to conditional sampling, i.e. we want to simulate independent sampling. Momnitor
# the variables of interest, which in this case is d, the overall pooled effect size. The OR
# is also monitored:
EviSynth_Mod <- jags(data = jags_Data, model.file = "ExModel.txt",
n.iter = 10000, n.burnin = 5000, parameters.to.save = c("OR", "d"))
# ... thus this is the 'average' marginal effect/averaged over 10000 simulations, given the
# declared normal probability distributions and the likelihood/sampling model. Note that due
# to the very simple model and vague prior, little to none deviance occurs (see sd for
# declared sd for d in model, sigma equivalent to .00001, thus when marginalised/averaged out
# over 10000 simulations, this has a minor effect).
# Convert Jags object to MCMC object for post-inspection:
mcmc_Output <- as.mcmc(EviSynth_Mod$BUGSoutput)
plot(mcmc_Output)
mcmcplot(mcmc_Output)
# ===========================================================================================
# Simple Random Effects Evidence Synthesis Example ------------------------
# ===========================================================================================
# Since variances cannot go negative, a Normal distribution with mean zero and large variance
# is not a viable option:
# tau ~ dunif(0, 10)
# ... a value of 10 for the between study standard deviation is very large on the LOR scale
# and thus this prior distribution covers all plausible values.
model_string <- "model {
for (i in 1:nStud) {
# Transforming V into precision variable:
P[i] <- 1 / V[i]
# Likelihood:
Y[i] ~ dnorm(delta[i], P[i])
# Random sampling model for between
# study variability:
delta[i] ~ dnorm(d, prec)
}
# Prior for mean effect (d):
d ~ dnorm(0, 1.0E-5)
# Converting LOR back to OR:
OR <- exp(d)
# Prior for between study sd:
tau ~ dunif(0, 10)
# Transforming tau into var
# and precision for delta:
tau.sq <- tau * tau
prec <- 1 / (tau.sq)
}"
writeLines(text = model_string, con = "RandomEffModel.txt")
# Data:
jags_Data <- list(Y = c(-.3289, -.3845, -.2196, -.2222, -.2255, .1246, -.1110),
V = c(.0389, .0412, .0205, .0648, .0352, .0096, .0015), nStud = 7)
# Initial values:
inits <- list(d = 0, tau = 1, delta = c(0, 0, 0, 0, 0, 0, 0))
R_effects_Mod <- jags(data = jags_Data, model.file = "RandomEffModel.txt",
n.iter = 30000, n.burnin = 10000,
parameters.to.save = c("OR", "d", "tau.sq", "tau"))
R_effects_Mod
# Posterior Inspection via Visualisation -----------------------------------------
posterior <- as.array(R_effects_Mod$BUGSoutput$sims.array)
dimnames(posterior)
color_scheme_set("viridisB")
theme_set(theme_minimal())
mcmc_trace(posterior, pars = c("OR", "d"),
facet_args = list(ncol = 1, strip.position = "left"))
color_scheme_set("viridisA")
theme_set(theme_minimal())
mcmc_trace(posterior[,, 1:5], window = c(950, 1000), size = 1) +
panel_bg(fill = "white", color = NA) +
legend_move("top")
color_scheme_set("mix-teal-pink")
mcmc_dens_overlay(posterior, pars = c("OR", "d"))
color_scheme_set("pink")
mcmc_pairs(posterior, pars = c("OR", "tau"),
off_diag_args = list(size = 1.5))
# Note that in this example, there is considerable uncertainty in the estimation of the
# between study variance parameter, this is typical when the number of studies in the
# meta-analysis is small. This can be visually seen in the large spread of tau, forming a
# large, right skewed fat tail of uncertainty.
# End file ----------------------------------------------------------------