-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathThunkRecursions.v
183 lines (140 loc) · 6.06 KB
/
ThunkRecursions.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
From Coq Require Import
Strings.String
Lists.List
.
From PlutusCert Require Import
Language.PlutusIR
Analysis.BoundVars
Transform.Compat
Util.List
Analysis.Purity
.
Import NamedTerm.
Import ListNotations.
(*
Summary
---
Strict Let Rec bindings that don't have a function type will be thunked so that
their type is of function type (unit -> τ). For example polymorphic functions
(∀a ∀b. ...). This is necessary for the compilation step that translates Let Rec
using the indexed fixpoint combinator, which can only handle recursive bindings
with function type.
This pass doesn't actually do thunking, it just changes strict bindings to
non-strict so that the later LetNonStrict pass will thunk them. An additional
(shadowing) strict binder is then added to "strictify" the term again.
In other words, this pass should establish the post-condititon that all LetRec
bindings have function type.
Global uniqueness
---
According to [1], this pass does not preserve global uniquness, because
each thunked recursive binder will have a non-recursive "adapter" binder with
the same name.
[1] plutus-core/plutus-ir/src/PlutusIR/Transform/ThunkRecursions.hs
Possibly implement as function
---
The relation below is more general, because it allows the transformation to be
optionally applied. However, in the compiler, this is not optional, and all
strict letrecs with non-function type are transformed.
We could implement this in coq as a function which should result in a syntactic
equivalent term (there will be no new binder names).
*)
(* Records each binder in the Let Rec that was unstrictified *)
Definition ctx_unstrictified := list (string * (Term * ctx)).
Definition Binding_to_ctx (b : Binding) : ctx :=
match b with
| TermBind s (VarDecl x τ) t => [(x, let_bound s)]
| _ => []
end
.
Inductive thunk_rec (Γ : ctx) : Term -> Term -> Type :=
| tr_Let_Rec : forall bs bs' t t' Γ_bs bs_new Ω,
thunk_rec_Bindings_Rec (Γ_bs ++ Γ) bs bs' Ω ->
thunk_rec (Γ_bs ++ Γ) t t' ->
strictify Γ Ω bs_new ->
thunk_rec Γ (Let Rec bs t) (Let Rec bs' (mk_let NonRec bs_new t'))
(* Compatibility cases, `Compat` cannot currently capture
this pattern, which has to extend the ctx Γ in all
term binders *)
| tr_Let_NonRec : forall bs bs' t t' Γ_bs,
thunk_rec_Bindings_NonRec Γ bs bs' Γ_bs ->
thunk_rec (Γ_bs ++ Γ) t t' ->
thunk_rec Γ (Let Rec bs t) (Let Rec bs' t')
| tr_Var : forall x,
thunk_rec Γ (Var x) (Var x)
| tr_TyAbs : forall α k t t',
thunk_rec Γ t t' ->
thunk_rec Γ (TyAbs α k t) (TyAbs α k t')
| tr_LamAbs : forall x τ t t',
thunk_rec ((x, lambda_bound) :: Γ) t t' ->
thunk_rec Γ (LamAbs x τ t) (LamAbs x τ t')
| tr_Apply : forall s s' t t',
thunk_rec Γ s s' ->
thunk_rec Γ t t' ->
thunk_rec Γ (Apply s t) (Apply s' t')
| tr_Constant : forall c,
thunk_rec Γ (Constant c) (Constant c)
| tr_Builtin : forall f,
thunk_rec Γ (Builtin f) (Builtin f)
| tr_TyInst : forall t t' τ,
thunk_rec Γ t t' ->
thunk_rec Γ (TyInst t τ) (TyInst t' τ)
| tr_Error : forall τ,
thunk_rec Γ (Error τ) (Error τ)
| tr_IWrap : forall σ τ t t',
thunk_rec Γ (IWrap σ τ t) (IWrap σ τ t')
| tr_Unwrap : forall t t',
thunk_rec Γ (Unwrap t) (Unwrap t')
with thunk_rec_Bindings_NonRec (Γ : ctx) : list Binding -> list Binding -> ctx -> Type :=
| tr_Bindings_NonRec_nil :
thunk_rec_Bindings_NonRec Γ [] [] Γ
| tr_Bindings_NonRec_cons : forall b b' bs bs',
forall Γ_b Γ_bs,
thunk_rec_Binding_NonRec Γ b b' ->
thunk_rec_Bindings_NonRec (Binding_to_ctx b ++ Γ) bs bs' Γ_bs ->
thunk_rec_Bindings_NonRec Γ (b :: bs) (b' :: bs') (Γ_bs ++ Γ_b)
with thunk_rec_Bindings_Rec (Γ : ctx) : list Binding -> list Binding -> ctx_unstrictified -> Type :=
| tr_Bindings_Rec_nil :
thunk_rec_Bindings_Rec Γ [] [] []
| tr_Bindings_Rec_cons : forall b b' bs bs' Ω_b Ω_bs,
thunk_rec_Binding_Rec Γ b b' Ω_b ->
thunk_rec_Bindings_Rec Γ bs bs' Ω_bs->
thunk_rec_Bindings_Rec Γ (b :: bs) (b' :: bs') (Ω_bs ++ Ω_b)
(* Also indexed by the unstrictified bindings *)
with thunk_rec_Binding_NonRec (Γ : ctx) : Binding -> Binding -> Type :=
| tr_TermBind_NonRec : forall s vd t t',
thunk_rec Γ t t' ->
thunk_rec_Binding_NonRec Γ (TermBind s vd t) (TermBind NonStrict vd t')
| tr_DatatypeBind_NonRec : forall d,
thunk_rec_Binding_NonRec Γ (DatatypeBind d) (DatatypeBind d)
| tr_TypeBind_NonRec : forall tvd τ,
thunk_rec_Binding_NonRec Γ (TypeBind tvd τ) (TypeBind tvd τ)
(* Also indexed by the unstrictified bindings *)
with thunk_rec_Binding_Rec (Γ : ctx) : Binding -> Binding -> ctx_unstrictified -> Type :=
(* The actual implementation only unstrictifies non-function type bindings, but
it is a sound transformation for any strict recursive binding *)
| tr_TermBind_Rec_Unstrictify : forall vd t t' x τ,
thunk_rec Γ t t' ->
vd = VarDecl x τ ->
thunk_rec_Binding_Rec Γ (TermBind Strict vd t) (TermBind NonStrict vd t') [(x, (t, Γ))]
| tr_TermBind_Rec : forall s vd t t',
thunk_rec Γ t t' ->
thunk_rec_Binding_Rec Γ (TermBind s vd t) (TermBind s vd t') []
| tr_DatatypeBind_Rec : forall d,
thunk_rec_Binding_Rec Γ (DatatypeBind d) (DatatypeBind d) []
| tr_TypeBind_Rec : forall tvd τ,
thunk_rec_Binding_Rec Γ (TypeBind tvd τ) (TypeBind tvd τ) []
(* Add let NonRec bindings for unstrictified bindings, except if
they were definitely pure *)
with strictify (Γ : ctx) : ctx_unstrictified -> list Binding -> Type :=
| str_cons_pure : forall Γ_t t x Ω_bs bs,
is_pure Γ_t t ->
strictify Γ Ω_bs bs ->
strictify Γ ((x, (t, Γ)) :: Ω_bs) bs
| str_cons_strictify : forall x x_info τ b bs Ω_bs,
Lookup x (let_bound Strict) Γ ->
b = TermBind Strict (VarDecl x τ) (Var x) ->
strictify Γ Ω_bs bs ->
strictify Γ ((x, x_info) :: Ω_bs) ((b :: bs))
| str_nil :
strictify Γ [] []
.