forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tvt_rewards.py
247 lines (210 loc) · 9.76 KB
/
tvt_rewards.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Lint as: python2, python3
# pylint: disable=g-bad-file-header
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Temporal Value Transport implementation."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from concurrent import futures
import numpy as np
from six.moves import range
from six.moves import zip
def _unstack(array, axis):
"""Opposite of np.stack."""
split_array = np.split(array, array.shape[axis], axis=axis)
return [np.squeeze(a, axis=axis) for a in split_array]
def _top_k_args(array, k):
"""Return top k arguments or all arguments if array size is less than k."""
if len(array) <= k:
return np.arange(len(array))
return np.argpartition(array, kth=-k)[-k:]
def _threshold_read_event_times(read_strengths, threshold):
"""Return the times of max read strengths within one threshold read event."""
chosen_times = []
over_threshold = False
max_read_strength = 0.
# Wait until the threshold is crossed then keep track of max read strength and
# time of max read strength until the read strengths go back under the
# threshold, then add that max read strength time to the chosen times. Wait
# until threshold is crossed again and then repeat the process.
for time, strength in enumerate(read_strengths):
if strength > threshold:
over_threshold = True
if strength > max_read_strength:
max_read_strength = strength
max_read_strength_time = time
else:
# If coming back under threshold, add the time of the last max read.
if over_threshold:
chosen_times.append(max_read_strength_time)
max_read_strength = 0.
over_threshold = False
# Add max read strength time if episode finishes before going under threshold.
if over_threshold:
chosen_times.append(max_read_strength_time)
return np.array(chosen_times)
def _tvt_rewards_single_head(read_weights, read_strengths, read_times,
baselines, alpha, top_k_t1,
read_strength_threshold, no_transport_period):
"""Compute TVT rewards for a single read head, no batch dimension.
This performs the updates for one read head.
`t1` and `t2` refer to times to where and from where the value is being
transported, respectively. I.e. the rewards at `t1` times are being modified
based on values at times `t2`.
Args:
read_weights: shape (ep_length, top_k).
read_strengths: shape (ep_length,).
read_times: shape (ep_length, top_k).
baselines: shape (ep_length,).
alpha: The multiplier for the temporal value transport rewards.
top_k_t1: For each read event time, this determines how many time points
to send tvt reward to.
read_strength_threshold: Read strengths below this value are ignored.
no_transport_period: Length of no_transport_period.
Returns:
An array of TVT rewards with shape (ep_length,).
"""
tvt_rewards = np.zeros_like(baselines)
# Mask read_weights for reads that read back to times within
# no_transport_period of current time.
ep_length = read_times.shape[0]
times = np.arange(ep_length)
# Expand dims for correct broadcasting when subtracting read_times.
times = np.expand_dims(times, -1)
read_past_no_transport_period = (times - read_times) > no_transport_period
read_weights_masked = np.where(read_past_no_transport_period,
read_weights,
np.zeros_like(read_weights))
# Find t2 times with maximum read weights. Ignore t2 times whose maximum
# read weights fall inside the no_transport_period.
max_read_weight_args = np.argmax(read_weights, axis=1) # (ep_length,)
times = np.arange(ep_length)
max_read_weight_times = read_times[times,
max_read_weight_args] # (ep_length,)
read_strengths_cut = np.where(
times - max_read_weight_times > no_transport_period,
read_strengths,
np.zeros_like(read_strengths))
# Filter t2 candidates to perform value transport on local maximums
# above a threshold.
t2_times_with_largest_reads = _threshold_read_event_times(
read_strengths_cut, read_strength_threshold)
# Loop through all t2 candidates and transport value to top_k_t1 read times.
for t2 in t2_times_with_largest_reads:
try:
baseline_value_when_reading = baselines[t2]
except IndexError:
raise RuntimeError("Attempting to access baselines array with length {}"
" at index {}. Make sure output_baseline is set in"
" the agent config.".format(len(baselines), t2))
read_times_from_t2 = read_times[t2]
read_weights_from_t2 = read_weights_masked[t2]
# Find the top_k_t1 read times for this t2 and their corresponding read
# weights. The call to _top_k_args() here gives the array indices for the
# times and weights of the top_k_t1 reads from t2.
top_t1_indices = _top_k_args(read_weights_from_t2, top_k_t1)
top_t1_read_times = np.take(read_times_from_t2, top_t1_indices)
top_t1_read_weights = np.take(read_weights_from_t2, top_t1_indices)
# For each of the top_k_t1 read times t and corresponding read weight w,
# find the trajectory that contains step_num (t + shift) and modify the
# reward at step_num (t + shift) using w and the baseline value at t2.
# We ignore any read times t >= t2. These can emerge because if nothing
# in memory matches positively with the read query, the top reads may be
# in the empty region of the memory.
for step_num, read_weight in zip(top_t1_read_times, top_t1_read_weights):
if step_num >= t2:
# Skip this step_num as it is not really a memory time.
continue
# Compute the tvt reward and add it on.
tvt_reward = alpha * read_weight * baseline_value_when_reading
tvt_rewards[step_num] += tvt_reward
return tvt_rewards
def _compute_tvt_rewards_from_read_info(
read_weights, read_strengths, read_times, baselines, gamma,
alpha=0.9, top_k_t1=50,
read_strength_threshold=2.,
no_transport_period_when_gamma_1=25):
"""Compute TVT rewards given supplied read information, no batch dimension.
Args:
read_weights: shape (ep_length, num_read_heads, top_k).
read_strengths: shape (ep_length, num_read_heads).
read_times: shape (ep_length, num_read_heads, top_k).
baselines: shape (ep_length,).
gamma: Scalar discount factor used to calculate the no_transport_period.
alpha: The multiplier for the temporal value transport rewards.
top_k_t1: For each read event time, this determines how many time points
to send tvt reward to.
read_strength_threshold: Read strengths below this value are ignored.
no_transport_period_when_gamma_1: no transport period when gamma == 1.
Returns:
An array of TVT rewards with shape (ep_length,).
"""
if gamma < 1:
no_transport_period = int(1 / (1 - gamma))
else:
if no_transport_period_when_gamma_1 is None:
raise ValueError("No transport period must be defined when gamma == 1.")
no_transport_period = no_transport_period_when_gamma_1
# Split read infos by read head.
num_read_heads = read_weights.shape[1]
read_weights = _unstack(read_weights, axis=1)
read_strengths = _unstack(read_strengths, axis=1)
read_times = _unstack(read_times, axis=1)
# Calcuate TVT rewards for each read head separately and add to total.
tvt_rewards = np.zeros_like(baselines)
for i in range(num_read_heads):
tvt_rewards += _tvt_rewards_single_head(
read_weights[i], read_strengths[i], read_times[i],
baselines, alpha, top_k_t1, read_strength_threshold,
no_transport_period)
return tvt_rewards
def compute_tvt_rewards(read_infos, baselines, gamma=.96):
"""Compute TVT rewards from EpisodeOutputs.
Args:
read_infos: A memory_reader.ReadInformation namedtuple, where each element
has shape (ep_length, batch_size, num_read_heads, ...).
baselines: A numpy float array with shape (ep_length, batch_size).
gamma: Discount factor.
Returns:
An array of TVT rewards with shape (ep_length,).
"""
if not read_infos:
return np.zeros_like(baselines)
# TVT reward computation is without batch dimension. so we need to process
# read_infos and baselines into batchwise components.
batch_size = baselines.shape[1]
# Split each element of read info on batch dim.
read_weights = _unstack(read_infos.weights, axis=1)
read_strengths = _unstack(read_infos.strengths, axis=1)
read_indices = _unstack(read_infos.indices, axis=1)
# Split baselines on batch dim.
baselines = _unstack(baselines, axis=1)
# Comute TVT rewards for each element in the batch (threading over batch).
tvt_rewards = []
with futures.ThreadPoolExecutor(max_workers=batch_size) as executor:
for i in range(batch_size):
tvt_rewards.append(
executor.submit(
_compute_tvt_rewards_from_read_info,
read_weights[i],
read_strengths[i],
read_indices[i],
baselines[i],
gamma)
)
tvt_rewards = [f.result() for f in tvt_rewards]
# Process TVT rewards back into an array of shape (ep_length, batch_size).
return np.stack(tvt_rewards, axis=1)