-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUT-IGSP.py
87 lines (58 loc) · 2.55 KB
/
UT-IGSP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from causaldag import unknown_target_igsp
import causaldag as cd
import random
from causaldag.utils.ci_tests import gauss_ci_suffstat, gauss_ci_test, MemoizedCI_Tester
from causaldag.utils.invariance_tests import gauss_invariance_suffstat, gauss_invariance_test, MemoizedInvarianceTester
import pandas
import numpy as np
import time
#kk = 2
#seed_number = 101
scaleN = 1
n = 100 # number of nodes
N = 4*n*scaleN # number of observations
exp_ints = scaleN*[5, 10, 20][kk - 1] # number of observations per intervention
exp_parents = 2 # expected number of parents
ni = 10 # number of possible interventions
# store values for later dataframe
setup_vec = [n, N, exp_ints, exp_parents, ni, seed_number]
names_setup_vec = ["n", "N", "ints", "parents", "ni", "seed"]
mystring = [""] * len(setup_vec)
for ii in range(len(setup_vec)):
mystring[ii] = "_".join([names_setup_vec[ii], str(setup_vec[ii])])
f_name = "_".join(mystring)
subdir_name = "_".join(mystring[0:5])
#dir_name = "/".join(["./simresults_s", subdir_name])
dir_name = "/".join(["./simresults_g", subdir_name])
Ts = pandas.read_csv("".join([dir_name, "/", f_name, "_Ts.csv"]))["x"]
data = pandas.read_csv("".join([dir_name, "/", f_name, "_data.csv"]))
obs_samples = np.array(data.iloc[np.where(Ts == 0)])
diffTs = np.array(list(set(Ts)))
diffTs = diffTs[np.where(diffTs > 0)]
iv_samples_list = [np.array(data.iloc[np.where(Ts == ii)]) for ii in diffTs]
# Form sufficient statistics
obs_suffstat = gauss_ci_suffstat(obs_samples)
invariance_suffstat = gauss_invariance_suffstat(obs_samples, iv_samples_list)
setting_list = [dict(known_interventions=[]) for ii in diffTs]
SP_alphas = np.array([2.48e-08, 1.11e-07, 4.98e-07, 2.23e-06, 1.00e-05, 1.65e-05, 2.72e-05, 4.48e-05,7.39e-05])
DAGstring = [""] * len(SP_alphas)
print(seed_number)
start_time = time.time()
# Run UT-IGSP
# Create conditional independence tester and invariance tester
for ii in range(len(SP_alphas)):
alpha = SP_alphas[ii]
print(alpha)
alpha_inv = alpha
ci_tester = MemoizedCI_Tester(gauss_ci_test, obs_suffstat, alpha=alpha)
invariance_tester = MemoizedInvarianceTester(gauss_invariance_test, invariance_suffstat, alpha=alpha_inv)
try:
est_dag, est_targets_list = unknown_target_igsp(setting_list, set(range(n)), ci_tester, invariance_tester)
except:
est_dag = "error"
print("SVD error")
DAGstring[ii] = est_dag
time_taken = time.time() - start_time
print(time_taken)
DAGs = pandas.DataFrame(DAGstring)
DAGs.to_csv("".join([dir_name, "/", f_name, "_UT-IGSP_DAGs.csv"]), header=False, index=False)