-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_q_build_markov.py
564 lines (463 loc) · 24.2 KB
/
deep_q_build_markov.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
from collections import deque
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import random
import csv
import gym
import pyreason_gym
import matplotlib.pyplot as plt
class DQN(nn.Module):
def __init__(self, in_states, h1_nodes, out_actions):
super().__init__()
self.fc1 = nn.Linear(in_states, h1_nodes)
self.fc2 = nn.Linear(h1_nodes, h1_nodes*2)
self.out = nn.Linear(h1_nodes*2, out_actions)
def forward(self, x):
x = F.tanh(self.fc1(x))
x = F.tanh(self.fc2(x))
x = self.out(x)
return x
class ReplayMemory():
def __init__(self, maxlen):
self.memory = deque([], maxlen=maxlen)
def append(self, transition):
self.memory.append(transition)
def sample(self, sample_size):
return random.sample(self.memory, sample_size)
def __len__(self):
return len(self.memory)
class LegalBridgeDQL():
# Hyperparameters (adjustable)
learning_rate_a = 0.01 # learning rate (alpha)
discount_factor_g = 0.99 # discount rate (gamma)
network_sync_rate = 5 # number of steps the agent takes before syncing the policy and target network
replay_memory_size = 1000 # size of replay memory
mini_batch_size = 32 # size of the training data set sampled from the replay memory
# Neural Network
loss_fn = nn.MSELoss() # NN Loss function. MSE=Mean Squared Error can be swapped to something else.
optimizer = None # NN Optimizer. Initialize later.
ACTIONS = ['red-vertical', 'red-horizontal','green-vertical', 'green-horizontal', 'blue-vertical', 'blue-horizontal']
def train(self, episodes, train_set, test_set, preferential_constraint = False):
env = gym.make('PyReasonBridgeWorld-v0', preferential_constraint=preferential_constraint)
num_states = 9
num_actions = 6
epsilon = 1
memory = ReplayMemory(self.replay_memory_size)
policy_dqn = DQN(in_states=num_states, h1_nodes=64, out_actions=num_actions)
target_dqn = DQN(in_states=num_states, h1_nodes=64, out_actions=num_actions)
target_dqn.load_state_dict(policy_dqn.state_dict())
# print('Policy (random, before training):')
# self.pri
self.optimizer = torch.optim.Adam(policy_dqn.parameters(), lr = self.learning_rate_a)
rewards_per_episode = np.zeros(episodes)
epsilon_history = []
step_count = 0
for i in range(episodes):
# print(f'Episode:{train_set[i]}')
mode_val = int(np.floor(len_train_set/10))
if i%mode_val==0 and i != 0:
len_test_set = len(test_set)
done_count = bridge_world.test(len_test_set, test_set, preferential_constraint=preferential_constraint)
accuracy = done_count / len_test_set
print(f'Accuracy: {accuracy*100:.2f}%')
state = env.reset()[0]
real_to_node_initial_facts, real_initial_facts = self.get_initial_blocks_dict(csv_file=f'bridgeworld_data/{train_set[i]}.csv')
# print(train_set[i])
state_dict = env.initialize_facts(real_to_node_initial_facts)
# print(state_dict)
input_tensor = self.get_input_tensor_from_state_dict(state_dict)
# print(input_tensor)
# available_blocks = self.combine_values(real_initial_facts)
# print(available_blocks)
block_availability_list = self.get_block_availability_list(real_initial_facts).copy()
# print(block_availability_list)
terminated = False
truncated = False
policy_actions_slots = ['h1', 'h2', 'h3']
episode_reward = 0
# temp_available_blocks = available_blocks.copy()
temp_block_availability_list = block_availability_list.copy()
# print(f'Starting episode reward: {episode_reward}')
while(not terminated and not truncated):
# print(temp_block_availability_list)
# print(block_availability_list)
# print(available_blocks)
# print('Epsilon', epsilon)
r_num = random.random()
# print('Random num:', r_num)
# print(input_tensor)
if r_num < epsilon:
keys_list = [key for key in temp_block_availability_list.keys() if temp_block_availability_list[key]!=[]]
if len(keys_list) > 0:
# print('Randomly picking something out of : ')
# print(keys_list)
action_string = random.choice(keys_list)
# print('Picked action: ', action_string)
# index_to_remove = temp_available_blocks.index(action_string)
action_number = self.get_action_number(action_string)
action_block_number = self.get_action_block_number(action_number, temp_block_availability_list)
# print(action_string, action_number)
else:
# print('keys_list is empty----------------------------------------------------------------\n')
# print(f'Before finding empty option list, episode reward: {episode_reward}')
episode_reward -= 10
# print(f'After finding empty option list, episode reward: {episode_reward}')
break
else:
with torch.no_grad():
# print('Picked by RL')
action_number = policy_dqn(input_tensor).argmax().item()
action_string = self.get_action_string(action_number)
# if temp_block_availability_list[action_string]!=[]:
# index_to_remove = temp_available_blocks.index(action_string)
action_block_number = self.get_action_block_number(action_number, block_availability_list)
# print('Action num:', action_number)
if action_block_number == 'b0':
reward = -5
episode_reward += reward
# print(f'After RL agent selects unknown block, epsiode reward: {episode_reward}')
memory.append((input_tensor, action_number, input_tensor, reward, terminated))
step_count += 1
break
# print('=======================================================================================')
# print(policy_actions_slots[0], action_block_number)
new_state_dict, reward, terminated, truncated, info_dict = env.step((policy_actions_slots[0],action_block_number))
new_state = self.get_input_tensor_from_state_dict(new_state_dict)
# print((input_tensor, action_number, new_state_dict, new_state, reward, terminated, info_dict))
if info_dict['success_step'] == 1:
del policy_actions_slots[0]
# print(index_to_remove)
# print(available_blocks)
# del available_blocks[index_to_remove]
index_to_remove = temp_block_availability_list[action_string].index(action_block_number)
# print(index_to_remove)
# print(available_blocks)
del block_availability_list[action_string][index_to_remove]
# temp_available_blocks = available_blocks.copy()
temp_block_availability_list = block_availability_list.copy()
# print(policy_actions_slots)
# print(available_blocks)
# print(block_availability_list)
else:
# temp_available_blocks = [item for item in temp_available_blocks if item != action_string]
# index_to_remove = temp_block_availability_list[action_string].index(action_block_number)
temp_block_availability_list[action_string]= []
new_state = self.update_input_tensor_on_block_availability(new_state, temp_block_availability_list)
# print(policy_actions_slots)
# print(temp_available_blocks)
# print(temp_block_availability_list)
memory.append((input_tensor, action_number, new_state, reward, terminated))
episode_reward += reward
# print(f'After adding illegal/legal reward: {episode_reward}')
# print((input_tensor, action_number, new_state_dict, new_state, reward, terminated, info_dict))
input_tensor = new_state
step_count+=1
# print(episode_reward)
rewards_per_episode[i] = episode_reward
if len(memory) > self.mini_batch_size:
mini_batch = memory.sample(self.mini_batch_size)
self.optimize(mini_batch, policy_dqn, target_dqn)
# Decay epsilon
epsilon = max(epsilon - 1 / episodes, 0)
epsilon_history.append(epsilon)
# Copy policy network to target network after a certain number of steps
if step_count > self.network_sync_rate:
target_dqn.load_state_dict(policy_dqn.state_dict())
step_count = 0
# Close environment
env.close()
# Save policy
if preferential_constraint:
torch.save(policy_dqn.state_dict(), "bridge_world_dql_pref.pt")
else:
torch.save(policy_dqn.state_dict(), "intermediate_models/bridge_world_dql_no_pref.pt")
# Create new graph
plt.figure(1)
# Plot average rewards (Y-axis) vs episodes (X-axis)
sum_rewards = np.zeros(episodes)
for x in range(episodes):
sum_rewards[x] = np.sum(rewards_per_episode[max(0, x - 100):(x + 1)])
plt.subplot(121) # plot on a 1 row x 2 col grid, at cell 1
plt.plot(rewards_per_episode)
# Plot epsilon decay (Y-axis) vs episodes (X-axis)
plt.subplot(122) # plot on a 1 row x 2 col grid, at cell 2
plt.plot(epsilon_history)
# Save plots
if preferential_constraint:
plt.savefig('bridge_dql_pref.png')
else:
plt.savefig('bridge_dql_no_pref.png')
def test(self, episodes, test_set, preferential_constraint = False):
#
env = gym.make('PyReasonBridgeWorld-v0', preferential_constraint = preferential_constraint)
num_states = 9
num_actions = 6
# Load learned policy
policy_dqn = DQN(in_states=num_states, h1_nodes=64, out_actions=num_actions)
if preferential_constraint:
policy_dqn.load_state_dict(torch.load("bridge_world_dql_pref.pt"))
else:
policy_dqn.load_state_dict(torch.load("intermediate_models/bridge_world_dql_no_pref.pt"))
policy_dqn.eval() # switch model to evaluation mode
# print('Policy (trained):')
# self.print_dqn(policy_dqn)
done_count = 0
step_count = 0
for i in range(episodes):
# print('===================================')
# print(f'Episode {test_set[i]}')
state = env.reset()[0]
real_to_node_initial_facts, real_initial_facts = self.get_initial_blocks_dict(
csv_file=f'bridgeworld_data/{test_set[i]}.csv')
# print(test_set[i])
state_dict = env.initialize_facts(real_to_node_initial_facts)
# print(state_dict)
input_tensor = self.get_input_tensor_from_state_dict(state_dict)
# print(input_tensor)
block_availability_list = self.get_block_availability_list(real_initial_facts).copy()
# print(block_availability_list)
terminated = False
truncated = False
policy_actions_slots = ['h1', 'h2', 'h3']
# Agent navigates map until it falls into a hole (terminated), reaches goal (terminated), or has taken 200 actions (truncated).
temp_block_availability_list = block_availability_list.copy()
while (not terminated and not truncated):
with torch.no_grad():
# print('Inpu tensor: ',input_tensor)
action_number = policy_dqn(input_tensor).argmax().item()
action_string = self.get_action_string(action_number)
# print('Action: ', action_string)
action_block_number = self.get_action_block_number(action_number, block_availability_list)
if action_block_number == 'b0':
step_count += 1
break
# print(action_block_number)
# print('=======================================================================================')
# print(policy_actions_slots[0], action_block_number)
new_state_dict, reward, terminated, truncated, info_dict = env.step(
(policy_actions_slots[0], action_block_number))
new_state = self.get_input_tensor_from_state_dict(new_state_dict)
# print(policy_actions_slots[0], action_block_number, action_string)
# print((input_tensor, action_number, new_state_dict, new_state, reward, terminated, info_dict))
if terminated:
done_count += 1
break
if info_dict['success_step'] == 1:
del policy_actions_slots[0]
index_to_remove = temp_block_availability_list[action_string].index(action_block_number)
del block_availability_list[action_string][index_to_remove]
temp_block_availability_list = block_availability_list.copy()
# print(policy_actions_slots)
# print(available_blocks)
# print(block_availability_list)
else:
temp_block_availability_list[action_string] = []
new_state = self.update_input_tensor_on_block_availability(new_state, temp_block_availability_list)
# print(policy_actions_slots)
# print(temp_block_availability_list)
# print((input_tensor, action_number, new_state_dict, new_state, reward, terminated, info_dict))
input_tensor = new_state
step_count += 1
env.close()
return done_count
def optimize(self, mini_batch, policy_dqn, target_dqn):
# Get number of input nodes
num_states = policy_dqn.fc1.in_features
current_q_list = []
target_q_list = []
for state, action, new_state, reward, terminated in mini_batch:
if terminated:
# Agent either reached goal (reward=1) or fell into hole (reward=0)
# When in a terminated state, target q value should be set to the reward.
target = torch.FloatTensor([reward])
else:
# Calculate target q value
with torch.no_grad():
target = torch.FloatTensor(
reward + self.discount_factor_g * target_dqn(new_state).max()
)
# Get the current set of Q values
current_q = policy_dqn(state)
current_q_list.append(current_q)
# Get the target set of Q values
target_q = target_dqn(state)
# Adjust the specific action to the target that was just calculated
target_q[action] = target
target_q_list.append(target_q)
# Compute loss for the whole minibatch
loss = self.loss_fn(torch.stack(current_q_list), torch.stack(target_q_list))
# Optimize the model
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def update_input_tensor_on_block_availability(self, new_state_tensor, temp_block_availability_dict):
output_tensor = new_state_tensor.clone().detach()
output_tensor[3] = len(temp_block_availability_dict['red-vertical'])
output_tensor[4] = len(temp_block_availability_dict['red-horizontal'])
output_tensor[5] = len(temp_block_availability_dict['green-vertical'])
output_tensor[6] = len(temp_block_availability_dict['green-horizontal'])
output_tensor[7] = len(temp_block_availability_dict['blue-vertical'])
output_tensor[8] = len(temp_block_availability_dict['blue-horizontal'])
return output_tensor
def get_action_block_number(self, action_number, block_availability_list):
# Now let us assign block numbers to the given type of blocks
block_type = self.get_action_string(action_number)
block_number = 'b0'
if len(block_availability_list[block_type]) >= 1:
block_number = block_availability_list[block_type][0]
# del block_availability_list[block_type][0]
# else:
# print('No such block available in environemnt')
return block_number
def get_block_availability_list(self, initial_facts):
block_availability_list = {'red-vertical': [], 'red-horizontal': [],
'green-vertical': [], 'green-horizontal': [],
'blue-vertical': [], 'blue-horizontal': []}
# Filling up the counter dictionary based on the initial facts of environment
for block, list_properties in initial_facts.items():
color = list_properties[0]
shape = list_properties[1]
block_availability_list[f'{color}-{shape}'].append(block)
return block_availability_list
def get_action_string(self, action_number):
action_string_dict = {'red-vertical': 0, 'red-horizontal': 1,
'green-vertical': 2, 'green-horizontal': 3,
'blue-vertical': 4, 'blue-horizontal': 5}
reverse_dict = {value: key for key, value in action_string_dict.items()}
return reverse_dict[action_number]
def get_action_number(self, action_string):
action_string_dict = {'red-vertical': 0, 'red-horizontal': 1,
'green-vertical': 2, 'green-horizontal': 3,
'blue-vertical': 4, 'blue-horizontal': 5}
return action_string_dict[action_string]
def get_input_tensor_from_state_dict(self, state_dict):
blocks_available = state_dict.get('blocks_available', {})
slots_available = state_dict.get('slots_available', {})
# h1_entry = 0
# h2_entry = 0
# h3_entry = 0
# if slots_available['h1'] != 0:
# h1_entry = 1
# if slots_available['h2'] != 0:
# h2_entry = 1
# if slots_available['h3'] != 0:
# h3_entry = 1
# Old approacch
# Extracting values in a specific order
tensor_values = [
slots_available.get('h1', 0)-1,
slots_available.get('h2', 0)-1,
slots_available.get('h3', 0)-1,
blocks_available.get('red-vertical', 0),
blocks_available.get('red-horizontal', 0),
blocks_available.get('green-vertical', 0),
blocks_available.get('green-horizontal', 0),
blocks_available.get('blue-vertical', 0),
blocks_available.get('blue-horizontal', 0)
]
#New approach
# tensor_values = [
# h1_entry,
# h2_entry,
# h3_entry,
# blocks_available.get('red-vertical', 0),
# blocks_available.get('red-horizontal', 0),
# blocks_available.get('green-vertical', 0),
# blocks_available.get('green-horizontal', 0),
# blocks_available.get('blue-vertical', 0),
# blocks_available.get('blue-horizontal', 0)
#
# ]
tensor_values = torch.Tensor(tensor_values)
return tensor_values
def combine_values(self, dict1):
combined_list = []
for key, value in dict1.items():
combined_list.append('-'.join(value[:2])) # Joining first two elements with a hyphen
return combined_list
def get_initial_blocks_dict(self, csv_file):
initial_facts = {}
with open(csv_file, 'r') as file:
reader = csv.reader(file)
for idx, row in enumerate(reader):
key = f'b{idx + 1}'
initial_facts[key] = row
real_to_node_var = {
'red': 'c1', 'green': 'c2', 'blue': 'c3', 'vertical': 's1', 'horizontal': 's2'
}
real_to_node_initial_facts = {}
for block, attributes in initial_facts.items():
updated_attributes = [real_to_node_var.get(attr, attr) for attr in attributes]
real_to_node_initial_facts[block] = updated_attributes
return real_to_node_initial_facts, initial_facts
def split_train_test(self, total_samples = 612):
# Define the total number of samples
# total_samples = 2000
# Define the percentage split
train_percentage = 0.8
test_percentage = 0.2
# Calculate the number of samples for each split
num_train_samples = int(total_samples * train_percentage)
num_test_samples = total_samples - num_train_samples
# Generate a list of numbers from 1 to 1000
numbers = list(range(1, total_samples + 1))
# Randomly select numbers for the train set
random.seed(1)
train_set = random.sample(numbers, num_train_samples)
# Remove selected numbers from the list to ensure no overlap
for num in train_set:
numbers.remove(num)
# The remaining numbers constitute the test set
test_set = numbers
return train_set, test_set
'''
Converts an state (int) to a tensor representation.
For example, the FrozenLake 4x4 map has 4x4=16 states numbered from 0 to 15.
Parameters: state=1, num_states=16
Return: tensor([0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
'''
# def state_to_dqn_input(self, state: int, num_states: int) -> torch.Tensor:
# input_tensor = torch.zeros(num_states)
# input_tensor[state] = 1
# return input_tensor
# Print DQN: state, best action, q values
# def print_dqn(self, dqn):
# # Get number of input nodes
# num_states = dqn.fc1.in_features
#
# # Loop each state and print policy to console
# for s in range(num_states):
# # Format q values for printing
# q_values = ''
# for q in dqn(self.state_to_dqn_input(s, num_states)).tolist():
# q_values += "{:+.2f}".format(q) + ' ' # Concatenate q values, format to 2 decimals
# q_values = q_values.rstrip() # Remove space at the end
#
# # Map the best action to L D R U
# best_action = self.ACTIONS[dqn(self.state_to_dqn_input(s, num_states)).argmax()]
#
# # Print policy in the format of: state, action, q values
# # The printed layout matches the FrozenLake map.
# print(f'{s:02},{best_action},[{q_values}]', end=' ')
# if (s + 1) % 4 == 0:
# print() # Print a newline every 4 states
if __name__ == '__main__':
bridge_world= LegalBridgeDQL()
train_set, test_set = bridge_world.split_train_test(total_samples=612)
len_train_set = len(train_set)
len_test_set = len(test_set)
index_new = int(len_train_set/2)
train_set_1 = train_set[:index_new]
train_set_2 = train_set[index_new:]
len_train_set_1 = len(train_set_1)
len_train_set_2 = len(train_set_2)
bridge_world.train(len_train_set_1, train_set_1, test_set, preferential_constraint = False)
done_count = bridge_world.test(len_test_set, test_set, preferential_constraint=False)
accuracy = done_count / len_test_set
print(accuracy)
bridge_world.train(len_train_set_1, train_set_1, test_set, preferential_constraint = True)
done_count = bridge_world.test(len_test_set, test_set, preferential_constraint=True)
accuracy = done_count / len_test_set
print(accuracy)