forked from root-project/root
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstressSpectrum.cxx
285 lines (272 loc) · 9.91 KB
/
stressSpectrum.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// @(#)root/test:$name: $:$id: stressSpectrum.cxx,v 1.15 2002/10/25 10:47:51 rdm exp $
// Author: Rene Brun 17/01/2006
/////////////////////////////////////////////////////////////////
//
// TSPectrum test suite
// ====================
//
// This stress program tests many elements of the TSpectrum, TSpectrum2 classes.
//
// To run in batch, do
// stressSpectrum : run 100 experiments with graphics (default)
// stressSpectrum 1000 : run 1000 experiments with graphics
// stressSpectrum -b 200 : run 200 experiments in batch mode
// stressSpectrum -b : run 100 experiments in batch mode
//
// To run interactively, do
// root -b
// Root > .x stressSpectrum.cxx : run 100 experiments with graphics (default)
// Root > .x stressSpectrum.cxx(20) : run 20 experiments
// Root > .x stressSpectrum.cxx+(30) : run 30 experiments via ACLIC
//
// Several tests are run sequentially. Each test will produce one line (Test OK or Test FAILED) .
// At the end of the test a table is printed showing the global results
// Real Time and Cpu Time.
// One single number (ROOTMARKS) is also calculated showing the relative
// performance of your machine compared to a reference machine
// a Pentium IV 3.0 Ghz) with 512 MBytes of memory
// and 120 GBytes IDE disk.
//
// An example of output when all the tests run OK is shown below:
//
//////////////////////////////////////////////////////////////////////////
// //
//****************************************************************************
//* Starting stress S P E C T R U M *
//****************************************************************************
//Peak1 : found = 70.21/ 73.75, good = 65.03/ 68.60, ghost = 8.54/ 8.39,--- OK
//Peak2 : found =163/300, good =163, ghost =8,---------------------------- OK
//****************************************************************************
//stressSpectrum: Real Time = 19.86 seconds Cpu Time = 19.04 seconds
//****************************************************************************
//* ROOTMARKS = 810.9 * Root5.09/01 20051216/1229
//****************************************************************************
#include <cstdlib>
#include <iostream>
#include "snprintf.h"
#include "TApplication.h"
#include "TBenchmark.h"
#include "TCanvas.h"
#include "TH2.h"
#include "TF2.h"
#include "TRandom.h"
#include "TSpectrum.h"
#include "TSpectrum2.h"
#include "TStyle.h"
#include "TROOT.h"
#include "TMath.h"
Int_t npeaks;
Double_t fpeaks(Double_t *x, Double_t *par) {
Double_t result = par[0] + par[1]*x[0];
for (Int_t p=0;p<npeaks;p++) {
Double_t norm = par[3*p+2];
Double_t mean = par[3*p+3];
Double_t sigma = par[3*p+4];
result += norm*TMath::Gaus(x[0],mean,sigma);
}
return result;
}
Double_t fpeaks2(Double_t *x, Double_t *par) {
Double_t result = 0.1;
for (Int_t p=0;p<npeaks;p++) {
Double_t norm = par[5*p+0];
Double_t mean1 = par[5*p+1];
Double_t sigma1 = par[5*p+2];
Double_t mean2 = par[5*p+3];
Double_t sigma2 = par[5*p+4];
result += norm*TMath::Gaus(x[0],mean1,sigma1)*TMath::Gaus(x[1],mean2,sigma2);
}
return result;
}
void findPeaks(Int_t pmin, Int_t pmax, Int_t &nfound, Int_t &ngood, Int_t &nghost) {
npeaks = (Int_t)gRandom->Uniform(pmin,pmax);
Int_t nbins = 500;
Double_t dxbins = 2;
TH1F *h = new TH1F("h","test",nbins,0,nbins*dxbins);
//generate n peaks at random
Double_t par[3000];
par[0] = 0.8;
par[1] = -0.6/1000;
Int_t p,pf;
for (p=0;p<npeaks;p++) {
par[3*p+2] = 1;
par[3*p+3] = 10+gRandom->Rndm()*(nbins-20)*dxbins;
par[3*p+4] = 3+2*gRandom->Rndm();
}
TF1 *f = new TF1("f",fpeaks,0,nbins*dxbins,2+3*npeaks);
f->SetNpx(1000);
f->SetParameters(par);
h->FillRandom("f",200000);
TSpectrum *s = new TSpectrum(4*npeaks);
nfound = s->Search(h,2,"goff");
//Search found peaks
ngood = 0;
Double_t *xpeaks = s->GetPositionX();
for (p=0;p<npeaks;p++) {
for (pf=0;pf<nfound;pf++) {
Double_t dx = TMath::Abs(xpeaks[pf] - par[3*p+3]);
if (dx <dxbins) ngood++;
}
}
//Search ghost peaks
nghost = 0;
for (pf=0;pf<nfound;pf++) {
Int_t nf=0;
for (p=0;p<npeaks;p++) {
Double_t dx = TMath::Abs(xpeaks[pf] - par[3*p+3]);
if (dx <dxbins) nf++;
}
if (nf == 0) nghost++;
}
delete f;
delete h;
delete s;
}
void stress1(Int_t ntimes) {
Int_t pmin = 5;
Int_t pmax = 55;
TCanvas *c1 = new TCanvas("c1","Spectrum results",10,10,800,800);
c1->Divide(2,2);
gStyle->SetOptFit();
TH1F *hpeaks = new TH1F("hpeaks","Number of peaks",pmax-pmin,pmin,pmax);
TH1F *hfound = new TH1F("hfound","% peak founds",100,0,100);
TH1F *hgood = new TH1F("hgood", "% good peaks",100,0,100);
TH1F *hghost = new TH1F("hghost","% ghost peaks",100,0,100);
Int_t nfound,ngood,nghost;
for (Int_t i=0;i<ntimes;i++) {
findPeaks(pmin,pmax,nfound,ngood,nghost);
hpeaks->Fill(npeaks);
hfound->Fill(100*Double_t(nfound)/Double_t(npeaks));
hgood->Fill(100*Double_t(ngood)/Double_t(npeaks));
hghost->Fill(100*Double_t(nghost)/Double_t(npeaks));
//printf("npeaks = %d, nfound = %d, ngood = %d, nghost = %d\n",npeaks,nfound,ngood,nghost);
}
c1->cd(1);
hpeaks->Fit("pol1","lq");
c1->cd(2);
hfound->Fit("gaus","lq");
c1->cd(3);
hgood->Fit("gaus","lq");
c1->cd(4);
hghost->Fit("gaus","lq","",0,30);
c1->cd();
Double_t p1 = hfound->GetFunction("gaus")->GetParameter(1);
Double_t ep1 = hfound->GetFunction("gaus")->GetParError(1);
Double_t p2 = hgood->GetFunction("gaus")->GetParameter(1);
Double_t ep2 = hgood->GetFunction("gaus")->GetParError(1);
Double_t p3 = hghost->GetFunction("gaus")->GetParameter(1);
Double_t ep3 = hghost->GetFunction("gaus")->GetParError(1);
Double_t p1ref = 70.21; //ref numbers obtained with ntimes=1000
Double_t p2ref = 65.03;
Double_t p3ref = 8.54;
//printf("p1=%g+-%g, p2=%g+-%g, p3=%g+-%g\n",p1,ep1,p2,ep2,p3,ep3);
char sok[20];
if (TMath::Abs(p1ref-p1) < 2*ep1 && TMath::Abs(p2ref-p2) < 2*ep2 && TMath::Abs(p3ref-p3) < 2*ep3 ) {
snprintf(sok,20,"OK");
} else {
snprintf(sok,20,"failed");
}
printf("Peak1 : found =%6.2f/%6.2f, good =%6.2f/%6.2f, ghost =%5.2f/%5.2f,--- %s\n",
p1,p1ref,p2,p2ref,p3,p3ref,sok);
}
void stress2(Int_t np2) {
npeaks = np2;
TRandom r;
Int_t nbinsx = 200;
Int_t nbinsy = 200;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbinsx;
Double_t ymin = 0;
Double_t ymax = (Double_t)nbinsy;
Double_t dx = (xmax-xmin)/nbinsx;
Double_t dy = (ymax-ymin)/nbinsy;
TH2F *h2 = new TH2F("h2","test",nbinsx,xmin,xmax,nbinsy,ymin,ymax);
h2->SetStats(0);
//generate n peaks at random
Double_t par[3000];
Int_t p;
for (p=0;p<npeaks;p++) {
par[5*p+0] = r.Uniform(0.2,1);
par[5*p+1] = r.Uniform(xmin,xmax);
par[5*p+2] = r.Uniform(dx,5*dx);
par[5*p+3] = r.Uniform(ymin,ymax);
par[5*p+4] = r.Uniform(dy,5*dy);
}
TF2 *f2 = new TF2("f2",fpeaks2,xmin,xmax,ymin,ymax,5*npeaks);
f2->SetNpx(100);
f2->SetNpy(100);
f2->SetParameters(par);
h2->FillRandom("f2",500000);
//now the real stuff
TSpectrum2 *s = new TSpectrum2(2*npeaks);
Int_t nfound = s->Search(h2,2,"goff noMarkov");
//searching good and ghost peaks (approximation)
Int_t pf,ngood = 0;
Double_t *xpeaks = s->GetPositionX();
Double_t *ypeaks = s->GetPositionY();
for (p=0;p<npeaks;p++) {
for (pf=0;pf<nfound;pf++) {
Double_t diffx = TMath::Abs(xpeaks[pf] - par[5*p+1]);
Double_t diffy = TMath::Abs(ypeaks[pf] - par[5*p+3]);
if (diffx < 2*dx && diffy < 2*dy) ngood++;
}
}
if (ngood > nfound) ngood = nfound;
//Search ghost peaks (approximation)
Int_t nghost = 0;
for (pf=0;pf<nfound;pf++) {
Int_t nf=0;
for (p=0;p<npeaks;p++) {
Double_t diffx = TMath::Abs(xpeaks[pf] - par[5*p+1]);
Double_t diffy = TMath::Abs(ypeaks[pf] - par[5*p+3]);
if (diffx < 2*dx && diffy < 2*dy) nf++;
}
if (nf == 0) nghost++;
}
delete s;
delete f2;
delete h2;
Int_t nfoundRef = 163;
Int_t ngoodRef = 163;
Int_t nghostRef = 8;
char sok[20];
if ( TMath::Abs(nfound - nfoundRef) < 5
&& TMath::Abs(ngood - ngoodRef) < 5
&& TMath::Abs(nghost - nghostRef) < 5) {
snprintf(sok,20,"OK");
} else {
snprintf(sok,20,"failed");
}
printf("Peak2 : found =%d/%d, good =%d, ghost =%2d,---------------------------- %s\n",
nfound,npeaks,ngood,nghost,sok);
}
void stressSpectrum(Int_t ntimes=100) {
std::cout << "****************************************************************************" <<std::endl;
std::cout << "* Starting stress S P E C T R U M *" <<std::endl;
std::cout << "****************************************************************************" <<std::endl;
gBenchmark->Start("stressSpectrum");
stress1(ntimes);
stress2(300);
gBenchmark->Stop ("stressSpectrum");
Double_t reftime100 = 19.04; //pcbrun compiled
Double_t ct = gBenchmark->GetCpuTime("stressSpectrum");
const Double_t rootmarks = 800*reftime100*ntimes/(100*ct);
printf("****************************************************************************\n");
gBenchmark->Print("stressSpectrum");
printf("****************************************************************************\n");
printf("* ROOTMARKS =%6.1f * Root%-8s %d/%d\n",rootmarks,gROOT->GetVersion(),
gROOT->GetVersionDate(),gROOT->GetVersionTime());
printf("****************************************************************************\n");
}
#ifndef __CINT__
int main(int argc, char **argv)
{
gROOT->SetBatch();
TApplication theApp("App", &argc, argv);
gBenchmark = new TBenchmark();
Int_t ntimes = 100;
if (argc > 1) ntimes = atoi(argv[1]);
stressSpectrum(ntimes);
return 0;
}
#endif