-
Notifications
You must be signed in to change notification settings - Fork 2
/
p38.erl
53 lines (47 loc) · 1.7 KB
/
p38.erl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
-module(p38).
-export([answer/0]).
%% Take the number 192 and multiply it by each of 1, 2, and 3:
%% 192 × 1 = 192
%% 192 × 2 = 384
%% 192 × 3 = 576
%% By concatenating each product we get the 1 to 9 pandigital, 192384576.
%% We will call 192384576 the concatenated product of 192 and (1,2,3)
%% The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5,
%% giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
%% What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated
%% product of an integer with (1,2, ... , n) where n > 1?
-compile(export_all).
answer() ->
SetLengths = lists:seq(2,5),
TestNs = lists:seq(1,10000),
find_max(TestNs, SetLengths, 0).
find_max(_, [], Max) -> Max;
find_max(TestNs, [Len | SetT], Max) ->
Set = lists:seq(1,Len),
M = lists:max(
lists:map(fun(N) -> case is_candidate(N, Set) of
false -> 0;
P -> P
end
end,
TestNs)
),
case M > Max of
true -> find_max(TestNs, SetT, M);
false -> find_max(TestNs, SetT, Max)
end.
%% N is integer
%% L is list of multipliers
is_candidate(N, L) ->
Prod = lists:reverse(
lists:flatten(
lists:foldl(fun(X, A) -> [ lists:reverse(integer_to_list(N*X)) | A] end, [], L)
)
),
case is_pandigital(Prod) of
true -> list_to_integer(Prod);
false -> false
end.
is_pandigital(N) when length(N) =:= 9 ->
lists:all(fun(D) -> lists:member(D, N) end, lists:seq($1, $9));
is_pandigital(_) -> false.