-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_ialeuk25_analysis.Rmd
582 lines (381 loc) · 19.7 KB
/
_ialeuk25_analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
---
title: "analysis of ialeUK conference proceedings"
author: "James Millington"
output:
html_document:
number_sections: yes
toc: yes
code_folding: hide
df_print: paged
keep_md: yes
pdf_document:
highlight: tango
number_sections: yes
toc: yes
word_document:
toc: yes
linkcolor: red
citecolor: cyan
urlcolor: blue
---
# Total Conference Contributions
```{r results='hide', warning=F, message=F}
#Load Data
#(After slightly cleaning column titles - in future include code to do that here)
rm(list=ls())
library(tidyverse)
library(ggplot2)
path <- "C:/Users/k1076631/Google Drive/Research/Papers/InProgress/ialeUK_25years/QuantAnalysis/Rproject"
setwd(path)
filename <- "abstract_review_export_2018-06-11.csv"
cpdata <- read_csv(filename)
```
This document contains analysis by year. Future analysis could examine contribution attributes by:
- author affiliation (e.g. do NGOs conduct studies at particular scales?)
- landscape type (e.g. what species do studies in Urban landscapes focus on?)
- species (e.g. are birds studied more using empirical studies or GIS?)
etc.
```{r}
#spec(cpdata)
yrdata <- cpdata %>%
select_if(is.numeric) %>%
group_by(`Conference Year`) %>%
summarise_all(sum, na.rm=T)
```
Quick observations:
- general increase through time to early 2000s then drop but steady through 2010s
```{r}
authorCounts <- yrdata %>%
select(`Conference Year`,Academic, Government,NGO,Business,Private) %>%
mutate(yrsum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum) #calculate proportion
ggplot(authorCounts, aes(x=`Conference Year`, y=count)) + geom_bar(stat="identity")
```
# Analysis by Conference Year
Stacked bar plots of contributions (by types and year)
## Author Affiliation
Quick observations:
- Academic contributors generally dominate
- Government contributors have decreased through time
- NGO attendance has replaced declines in Government? (could check sum of Gov + NGO through time)
```{r}
authorCounts <- yrdata %>%
select(`Conference Year`,Academic, Government,NGO,Business,Private) %>%
mutate(yrsum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum) #calculate proportion
ggplot(authorCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(authorCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(authorCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Landscape Type
Quick observations:
- Lowland rural generaly dominates (but lesser contribution in later years)
- Spikes in some years for types (corresponding to special themes)
- Urban and Seascape both appear for first time in 1998; urban then constant presence, but seascape more variable until recent years
```{r}
lspCounts <- yrdata %>%
select(`Conference Year`,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(yrsum = rowSums(.[2:8])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(lspCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(lspCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(lspCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Species
Quick observations:
- no clear patterns
- some years contain no Generic Habitat - is this real or a data entry issue?
```{r}
sppCounts <- yrdata %>%
select(`Conference Year`,Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(yrsum = rowSums(.[2:11])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(sppCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(sppCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(sppCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
### Methods
Quick observations:
- empirical studies have decreased through time
- GIS and qualitative have increased through time
- Quantitative and theoretical quite steady through time (although theoretical does seem to have reduced after initial years)
```{r}
methodsCounts <- yrdata %>%
select(`Conference Year`, Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(yrsum = rowSums(.[2:7])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(methodsCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(methodsCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(methodsCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
### Spatial Extent
Quick observations:
- no clear trends?
- Global studies only appear from 2014 onwards
```{r}
extentCounts <- yrdata %>%
select(`Conference Year`, Micro, Mini, Local, Regional, National, Continental, Global,`Undefined Extent`) %>%
mutate(yrsum = rowSums(.[2:9])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(extentCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(extentCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(extentCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
### Temporal Extent
Quick observations:
- most studies have undefined temporal duration
- those that do are dominated by studies over decades and years
```{r echo=F}
temporalCounts <- yrdata %>%
select(`Conference Year`, Hours, Days, Weeks, Months, Years, Decades, Centuries, Longer, `Undefined Temporal`
) %>%
mutate(yrsum = rowSums(.[2:10])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(temporalCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(temporalCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(temporalCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
### Concepts
Quick observations:
- Ecosystem services appear from 1998 and have grown recently
- climate change interactions have only become common recently (since 2008)
- 'Scale and scaling' and 'connectivity and fragmentation seem to have decreased oin recent years
- LUCC and Spatial Analysis are mainstays throughout
```{r}
conceptCounts <- yrdata %>%
select(`Conference Year`, `PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`
) %>%
mutate(yrsum = rowSums(.[2:11])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(conceptCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(conceptCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(conceptCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
### Other Concepts
Quick observations:
- socio-economic studies have increased through time
- biodiversity has decreased through time
- Landscape management and Biodiversity peak in early 2000s
```{r}
othCCounts <- yrdata %>%
select(`Conference Year`, `Green Infrastructure`,`Planning and Architecture`,`Management and Conservation`,`Cultural Landscapes`,`Socio-economic Dimensions`,Biodiversity,`Landscape Assessment`,`Catchment Based Approach`,`Invasives Pests Diseases`
) %>%
mutate(yrsum = rowSums(.[2:10])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(othCCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(othCCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(othCCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
# Analysis by Author Affiliation
```{r}
#spec(cpdata)
affildata <- cpdata %>%
select_if(is.numeric) %>%
gather(key = Affiliation, value = count, Academic:Private) %>%
filter(count > 0) %>%
group_by(`Affiliation`) %>%
summarise_all(sum, na.rm=T)
```
### Total Conference Contributions
Quick observations:
- Academic contributors dominate, followed by Government (but as shown above, Government contributions have decreased recently, replaced by NGOs)
```{r}
lspACounts <- affildata %>%
select(`Affiliation`,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(Asum = rowSums(.[2:8])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(lspACounts, aes(x=`Affiliation`, y=count)) + geom_bar(stat="identity")
```
## Landscape Type
Stacked bar plots of contributions (by types and author affiliation)
### Using all landscape types
Quick observations:
- Business not good at reporting landscape type!
- Private have greatest proportions of Seascape and Other
```{r}
ggplot(lspACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(lspACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
### Without 'Undefined LspType' and 'Other' landscape types
Quick observations:
- Government has greatest proportion of Upland Rural
- Business has greatest Urban proportion and smallest Lowland Rural proportion
- Academic dominates total number of all landscape types (with possible exception of Upland Rural)
```{r}
lspACounts <- affildata %>%
select(`Affiliation`,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape) %>%
mutate(Asum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(lspACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(lspACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Species
Quick observations
- Academic seem to be majority by absolute number for all species
- Business and Private have greatest proportions of Generic Habitat
- NGOs have greatest proportion of Birds (RSPB?)
```{r}
speciesACounts <- affildata %>%
select(`Affiliation`,Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(Asum = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(speciesACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(speciesACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Methods
Quick observations
- Academic seem to be majority by absolute number for all methods
- Business obviously lower proportion of empirical studies (expensive?), substituted by GIS and qualitative
- Government has smallest proportion of qualitative
- Private has greatest proprtion of theoretical, no RS and relatively little GIS (technical training?)
```{r}
methodsACounts <- affildata %>%
select(`Affiliation`,Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(Asum = rowSums(.[2:7])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(methodsACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(methodsACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Spatial Extent
Quick observations
- Academic seem to be majority by absolute number for all extents
- Business have largest proportion of Global and National studies, with smallest proprtion of Local studies
- Private has larest proportion of Local and Mini studies (cost-related and given no RS and few GIS studies?)
- Academic: decreasing proportion Local -> Regional -> National -> Global
- Government: greater proportion of National than Regional
```{r}
spatialACounts <- affildata %>%
select(`Affiliation`,Micro, Mini, Local, Regional, National, Continental, Global,`Undefined Extent`) %>%
mutate(Asum = rowSums(.[2:9])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(spatialACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(spatialACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Temporal Extent
Quick observations
- Vast majority of all affiliations did not list temporal extent of the study
Academic seem to be majority by absolute number for all methods
- Not much more of interest here...
```{r}
temporalACounts <- affildata %>%
select(`Affiliation`,Hours, Days, Weeks, Months, Years, Decades, Centuries, Longer, `Undefined Temporal`) %>%
mutate(Asum = rowSums(.[2:10])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(temporalACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(temporalACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Concepts
Quick observations
- Academic seem to be majority by absolute number for all extents
- Business have greatest proportions of climate change and ecosystem services, less interested in history and legacy
- All other affiliations reasonably similar in terms of proportions
```{r}
conceptACounts <- affildata %>%
select(`Affiliation`,`PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`) %>%
mutate(Asum = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(conceptACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(conceptACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Other Concepts
Quick observations
- Academic seem to be majority by absolute number for all extents
- Government and NGOs have greater proportion of Management and Conservation than Academic
- Private low on biodiversity but higher on cultural landscapes, landscape assessment and planning
```{r}
oconceptACounts <- affildata %>%
select(`Affiliation`,`Green Infrastructure`,`Planning and Architecture`,`Management and Conservation`,`Cultural Landscapes`,`Socio-economic Dimensions`,Biodiversity,`Landscape Assessment`,`Catchment Based Approach`,`Invasives Pests Diseases`) %>%
mutate(Asum = rowSums(.[2:10])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(oconceptACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(oconceptACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
# Analysis by Landscape Type
```{r}
#spec(cpdata)
lspdata <- cpdata %>%
select_if(is.numeric) %>%
gather(key = LspType, value = count, `Upland rural`:Other) %>%
filter(count > 0) %>%
group_by(`LspType`) %>%
summarise_all(sum, na.rm=T)
```
Quick observations:
- Lowland rural dominate, followed by 'undefined' and Upland rural
```{r}
AlspCounts <- lspdata %>%
select(LspType,Academic, Government,NGO,Business,Private) %>%
mutate(Asum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -LspType, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(AlspCounts, aes(x=LspType, y=count)) + geom_bar(stat="identity")
```
## Author Affiliation
Quick observations:
- Academic are majority of all landscape types, with possible exception of Upland rural (Government?)
-
```{r}
ggplot(AlspCounts, aes(x=LspType, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(AlspCounts, aes(x=LspType, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Species
Quick observations
- Animal types quite evenly distributed across Lowland rural
- Humans are large contributor to seascape studies (possibly by absolute number as well as relative)
- Generic habitat is large contributor across all landscape types
```{r}
specieslspCounts <- lspdata %>%
select(LspType,Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(Asum = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -LspType, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(specieslspCounts, aes(x=LspType, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(specieslspCounts, aes(x=LspType, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Methods
Quick observations
- 'Undefined landscape' studies are largely theoretical
- Lowland rural largely studies using empirical and quantitative methods
- Seascape studies have largest proportion of qualitative methods
```{r}
methodslspCounts <- lspdata %>%
select(LspType,Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(Asum = rowSums(.[2:7])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -LspType, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(methodslspCounts, aes(x=LspType, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(methodslspCounts, aes(x=LspType, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Spatial Extent
Quick observations
- Urban landscape studies are dominated by Local scale analysis
- Upland rural have larger proportion of national studies than Lowland rural
```{r}
spatiallspCounts <- lspdata %>%
select(LspType,Micro, Mini, Local, Regional, National, Continental, Global,`Undefined Extent`) %>%
mutate(Asum = rowSums(.[2:9])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -LspType, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(spatiallspCounts, aes(x=LspType, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(spatiallspCounts, aes(x=LspType, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## More here