Skip to content

Latest commit

 

History

History
421 lines (389 loc) · 12 KB

127.md

File metadata and controls

421 lines (389 loc) · 12 KB

Results of GPT-4 on HumanEval/127

Date: 18 July, 2023
Model: gpt-4
Temperature: 0.2
Passing runs: 8
Total runs: 10
Success rate: 80%

Prompt

Tokens: 280

def intersection(interval1, interval2):
    """You are given two intervals,
    where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
    The given intervals are closed which means that the interval (start, end)
    includes both start and end.
    For each given interval, it is assumed that its start is less or equal its end.
    Your task is to determine whether the length of intersection of these two 
    intervals is a prime number.
    Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
    which its length is 1, which not a prime number.
    If the length of the intersection is a prime number, return "YES",
    otherwise, return "NO".
    If the two intervals don't intersect, return "NO".


    [input/output] samples:
    intersection((1, 2), (2, 3)) ==> "NO"
    intersection((-1, 1), (0, 4)) ==> "NO"
    intersection((-3, -1), (-5, 5)) ==> "YES"
    """

The above is an incomplete Python code fragment. Return the complete and correct code with no additional text.

Correct solution

def intersection(interval1, interval2):
    """You are given two intervals,
    where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
    The given intervals are closed which means that the interval (start, end)
    includes both start and end.
    For each given interval, it is assumed that its start is less or equal its end.
    Your task is to determine whether the length of intersection of these two 
    intervals is a prime number.
    Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
    which its length is 1, which not a prime number.
    If the length of the intersection is a prime number, return "YES",
    otherwise, return "NO".
    If the two intervals don't intersect, return "NO".


    [input/output] samples:
    intersection((1, 2), (2, 3)) ==> "NO"
    intersection((-1, 1), (0, 4)) ==> "NO"
    intersection((-3, -1), (-5, 5)) ==> "YES"
    """def is_prime(num):
        if num == 1 or num == 0:
            return False
        if num == 2:
            return True
        for i in range(2, num):
            if num%i == 0:
                return False
        return True

    l = max(interval1[0], interval2[0])
    r = min(interval1[1], interval2[1])
    length = r - l
    if length > 0 and is_prime(length):
        return "YES"
    return "NO"

Unit tests

def check(candidate):

    # Check some simple cases
    assert candidate((1, 2), (2, 3)) == "NO"
    assert candidate((-1, 1), (0, 4)) == "NO"
    assert candidate((-3, -1), (-5, 5)) == "YES"
    assert candidate((-2, 2), (-4, 0)) == "YES"

    # Check some edge cases that are easy to work out by hand.
    assert candidate((-11, 2), (-1, -1)) == "NO"
    assert candidate((1, 2), (3, 5)) == "NO"
    assert candidate((1, 2), (1, 2)) == "NO"
    assert candidate((-2, -2), (-3, -2)) == "NO"

Runs

✅ Run 1

Start time: 2023-07-18 18:01:44
Duration: 17.2s
Completion tokens: 200
Result: Pass

def intersection(interval1, interval2):
    def is_prime(n):
        if n < 2:
            return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0:
                return False
        return True

    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    if start > end:
        return "NO"
    else:
        length = end - start
        if is_prime(length):
            return "YES"
        else:
            return "NO"

# [input/output] samples:
print(intersection((1, 2), (2, 3))) # ==> "NO"
print(intersection((-1, 1), (0, 4))) # ==> "NO"
print(intersection((-3, -1), (-5, 5))) # ==> "YES"

✅ Run 2

Start time: 2023-07-18 18:01:28
Duration: 16.36s
Completion tokens: 193
Result: Pass

def intersection(interval1, interval2):
    def is_prime(n):
        if n < 2:
            return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0:
                return False
        return True

    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    if start > end:
        return "NO"
    else:
        length = end - start
        if is_prime(length):
            return "YES"
        else:
            return "NO"

print(intersection((1, 2), (2, 3)))  # "NO"
print(intersection((-1, 1), (0, 4)))  # "NO"
print(intersection((-3, -1), (-5, 5)))  # "YES"

✅ Run 3

Start time: 2023-07-18 18:01:13
Duration: 14.91s
Completion tokens: 193
Result: Pass

def intersection(interval1, interval2):
    def is_prime(n):
        if n < 2:
            return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0:
                return False
        return True

    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    if start > end:
        return "NO"
    else:
        length = end - start
        if is_prime(length):
            return "YES"
        else:
            return "NO"

print(intersection((1, 2), (2, 3)))  # "NO"
print(intersection((-1, 1), (0, 4)))  # "NO"
print(intersection((-3, -1), (-5, 5)))  # "YES"

✅ Run 4

Start time: 2023-07-18 18:00:50
Duration: 23.0s
Completion tokens: 193
Result: Pass

def intersection(interval1, interval2):
    def is_prime(n):
        if n < 2:
            return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0:
                return False
        return True

    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    if start > end:
        return "NO"
    else:
        length = end - start
        if is_prime(length):
            return "YES"
        else:
            return "NO"

print(intersection((1, 2), (2, 3)))  # "NO"
print(intersection((-1, 1), (0, 4)))  # "NO"
print(intersection((-3, -1), (-5, 5)))  # "YES"

✅ Run 5

Start time: 2023-07-18 18:00:33
Duration: 16.52s
Completion tokens: 193
Result: Pass

def intersection(interval1, interval2):
    def is_prime(n):
        if n < 2:
            return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0:
                return False
        return True

    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    if start > end:
        return "NO"
    else:
        length = end - start
        if is_prime(length):
            return "YES"
        else:
            return "NO"

print(intersection((1, 2), (2, 3)))  # "NO"
print(intersection((-1, 1), (0, 4)))  # "NO"
print(intersection((-3, -1), (-5, 5)))  # "YES"

❌ Run 6

Start time: 2023-07-18 17:59:57
Duration: 36.38s
Completion tokens: 389
Result: Fail

def intersection(interval1, interval2):
    """You are given two intervals,
    where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
    The given intervals are closed which means that the interval (start, end)
    includes both start and end.
    For each given interval, it is assumed that its start is less or equal its end.
    Your task is to determine whether the length of intersection of these two 
    intervals is a prime number.
    Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
    which its length is 1, which not a prime number.
    If the length of the intersection is a prime number, return "YES",
    otherwise, return "NO".
    If the two intervals don't intersect, return "NO".
    """

    # Function to check if a number is prime
    def is_prime(n):
        if n <= 1:
            return False
        if n == 2:
            return True
        if n % 2 == 0:
            return False
        for i in range(3, int(n**0.5) + 1, 2):
            if n % i == 0:
                return False
        return True

    # Find the intersection of the intervals
    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])

    # If the intervals do not intersect, return "NO"
    if start > end:
        return "NO"

    # If the length of the intersection is a prime number, return "YES"
    if is_prime(end - start + 1):
        return "YES"

    # Otherwise, return "NO"
    return "NO"

✅ Run 7

Start time: 2023-07-18 17:59:39
Duration: 17.22s
Completion tokens: 203
Result: Pass

def intersection(interval1, interval2):
    def is_prime(n):
        if n < 2:
            return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0:
                return False
        return True

    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    if start > end:
        return "NO"
    else:
        length = end - start
        if is_prime(length):
            return "YES"
        else:
            return "NO"

# [input/output] samples:
print(intersection((1, 2), (2, 3)))  # ==> "NO"
print(intersection((-1, 1), (0, 4)))  # ==> "NO"
print(intersection((-3, -1), (-5, 5)))  # ==> "YES"

❌ Run 8

Start time: 2023-07-18 17:59:13
Duration: 26.54s
Completion tokens: 376
Result: Fail

def intersection(interval1, interval2):
    """You are given two intervals,
    where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
    The given intervals are closed which means that the interval (start, end)
    includes both start and end.
    For each given interval, it is assumed that its start is less or equal its end.
    Your task is to determine whether the length of intersection of these two 
    intervals is a prime number.
    Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
    which its length is 1, which not a prime number.
    If the length of the intersection is a prime number, return "YES",
    otherwise, return "NO".
    If the two intervals don't intersect, return "NO".
    """

    def is_prime(n):
        if n < 2:
            return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0:
                return False
        return True

    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])

    if start > end:
        return "NO"
    else:
        length = end - start + 1
        return "YES" if is_prime(length) else "NO"

# [input/output] samples:
print(intersection((1, 2), (2, 3))) #==> "NO"
print(intersection((-1, 1), (0, 4))) #==> "NO"
print(intersection((-3, -1), (-5, 5))) #==> "YES"

✅ Run 9

Start time: 2023-07-18 17:58:49
Duration: 23.74s
Completion tokens: 304
Result: Pass

def intersection(interval1, interval2):
    def is_prime(n):
        if n < 2:
            return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0:
                return False
        return True

    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    if start > end:
        return "NO"
    else:
        length = end - start
        if is_prime(length):
            return "YES"
        else:
            return "NO"

print(intersection((1, 2), (2, 3)))  # "NO"
print(intersection((-1, 1), (0, 4)))  # "NO"
print(intersection((-3, -1), (-5, 5)))  # "YES"

✅ Run 10

Start time: 2023-07-18 17:58:34
Duration: 14.91s
Completion tokens: 193
Result: Pass

def intersection(interval1, interval2):
    def is_prime(n):
        if n < 2:
            return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0:
                return False
        return True

    start = max(interval1[0], interval2[0])
    end = min(interval1[1], interval2[1])
    if start > end:
        return "NO"
    else:
        length = end - start
        if is_prime(length):
            return "YES"
        else:
            return "NO"

print(intersection((1, 2), (2, 3)))  # "NO"
print(intersection((-1, 1), (0, 4)))  # "NO"
print(intersection((-3, -1), (-5, 5)))  # "YES"