-
Notifications
You must be signed in to change notification settings - Fork 46
/
policyEvaluation.py
45 lines (36 loc) · 2.25 KB
/
policyEvaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
"To manually evaluate all the policies obtained after convergence of the IRL step"
import numpy as np
import logging
import scipy
from playing import play #get the RL Test agent, gives out feature expectations after 2000 frames
from nn import neural_net #construct the nn and send to playing
from cvxopt import matrix
from cvxopt import solvers
from flat_game import carmunk
from learning import IRL_sorter
if __name__ == '__main__':
logger = logging.getLogger()
logger.setLevel(logging.INFO)
w1 = [ 0.25113026 ,0.12665933 , 0.2337365 , -0.24902441 ,-0.41625774 ,-0.36763118, -0.45510049, -0.53731318]
w2 = [ 0.27274123 ,0.13370425 , 0.24796427 ,-0.27907016 ,-0.44647981 ,-0.14933032 ,-0.48362556 ,-0.55931343]
w3 = [ 0.32691606 ,0.18549009 , 0.27767445 ,-0.2634921 ,-0.53513236 ,-0.17592619, -0.57946415 ,-0.24309005]
w4 = [ 0.29869779 ,-0.10281008 ,0.33087001 ,-0.60425918 ,-0.41447044 ,-0.19804659 ,-0.38206953, -0.26195472]
w5 = [ 0.17593456 , 0.17575453 ,0.11978925 ,-0.77919219 ,-0.29653833, -0.19485005 ,-0.14562471 ,-0.41177587]
w6 = [ 0.60655281 ,-0.24462372 ,-0.48915146 ,-0.37983326 ,0.13192824 ,-0.0807099 ,-0.3652799 , -0.17709299]
w7 = [ 0.53579818 ,0.06821153 ,-0.66356037 ,-0.38756875 ,0.16607826 ,-0.07549711, -0.27436563 ,-0.09585038]
w8 = [ 0.68721122 ,-0.25996475 ,-0.44837155 ,0.09193914 , 0.01417313 ,-0.14971882 ,-0.11218169 ,-0.46418518]
w9 = [-0.08805555 ,-0.06245599 ,0.09146864 ,-0.01147858 ,0.66908548 ,-0.07713598 ,-0.66502319, -0.28976889]
w10= [-0.07832619 ,-0.05555516 ,0.08136217 ,-0.0102103 , 0.59515748 ,-0.06861314 ,-0.59154403 ,-0.52460466]
weights = np.array(w1)+np.array(w2)+np.array(w3)+np.array(w4)+np.array(w5)+np.array(w6)+np.array(w7)+np.array(w8)+np.array(w9) #manually enter the weights obtained
weights = weights/9
i = 200
w9_ = [-(0.08805555) ,-(0.06245599) ,(0.09146864) ,-(0.01147858) ,-(0.66908548) ,(0.67713598) ,-(0.66502319), -0.58976889]
print ("weights norm :: ", np.linalg.norm(w9_))
w9_ = w9_/np.linalg.norm(w9_)
print ("weights norm new:: ", np.linalg.norm(w9_))
print ("weights after normalization:: ", w9_)
IRL_sorter(w9_, i)
# for W in weights:
# print (W)
# IRL_sorter(W, i)
# i += 1