-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsolution.js
287 lines (255 loc) · 8.8 KB
/
solution.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
const CSV_URL = "https://raw.githack.com/janithwanni/tf-all-around-2019/master/News_Extract.csv";
const API_KEY = "fdc7167d66b548568f9eb32bc54cbb33";
const url = 'https://newsapi.org/v2/top-headlines?country=us&apiKey=' + API_KEY;
const prediction_element = document.getElementById('news_prediction');
const table_body_element = document.getElementById('tableBody');
const training_data_element = document.getElementById('trainingDataVisualizer');
const training_data_prediction_column = document.getElementById('prediction_column');
const round_decimals = 3;
const round_value = Math.pow(10, round_decimals);
const article_stream_length = 20;
const sample_size = 40;
const print_size = 1;
const number_of_layers_in_model = 2;
const train_slice = 20;
const batchSize = 1;
const epochs = 1;
async function app() {
const dataset = tf.data.csv(CSV_URL, {
columnConfigs: {
"Title": {
required: true
},
"SentimentTitle": {
isLabel: true
}
},
configuredColumnsOnly: true
});
console.log("Loading Encoding Model");
const use_model = await use.load();
console.log("Loaded Encoding Model");
console.log("Features and Target");
console.log(await dataset.columnNames());
//await dataset.take(print_size).forEachAsync(e => console.log(e));
console.log("Flattening Dataset");
const flatdataset = dataset.map(({
xs,
ys
}) => {
return {
xs: Object.values(xs),
ys: Object.values(ys)
};
});
console.log("Flattenned dataset");
console.log("Visualizing Sentiment Scores");
const scatterplot_surface = {
name: "Plot of Sentiment Scores",
tab: "Data Visualization"
};
const sample_dataset = flatdataset.take(sample_size);
sample_dataset.toArray().then(slice_dataset => {
console.log("Converted Dataset to Array");
let index = -1;
let series1 = slice_dataset.map(value => {
index += 1;
return {
x: index,
y: value.ys[0]
};
});
const series = ['Sentiment Score of Title'];
const data = {
values: [series1],
series
}
tfvis.render.scatterplot(scatterplot_surface, data, {
xLabel: "Index",
yLabel: "Score",
yAxisDomain: [-0.5, 0.5]
});
console.log("Visualized Sentiment Scores");
console.log("Tabualising Training Data");
index = 0;
slice_dataset.map(value => {
index += 1;
const table_class = value.ys[0] >= 0 ? 'table-success' : 'table-danger';
const sentiment = Math.round(value.ys[0] * round_value) / round_value;
training_data_element.innerHTML += "<tr id='training_label_" + index + "'> <td>" + value.xs[0] + "</td>" + "<td class='" + table_class + "'>" + sentiment + "</td>";
})
console.log("Tabualising Training Data");
});
//await flatdataset.take(print_size).forEachAsync(e => console.log(e));
const embedDataset = await flatdataset.mapAsync(value => {
return getEmbeddings(value, use_model);
});
console.log("Embeded Dataset");
//await embedDataset.take(print_size).forEachAsync(e=>console.log(e));
console.log("Setting batch size for dataset");
const batchDataset = embedDataset.take(train_slice).batch(batchSize);
console.log("Set batch size. NO MORE PIPELINING");
//await batchDataset.take(print_size).forEachAsync(e=>console.log(e));
console.log("Creating Model");
const our_model = createModel();
console.log("Created Model");
our_model.summary();
console.log("Visualizing Model Layer Summary")
for (var i = 0; i < number_of_layers_in_model; i++) {
let layer_surface = {
name: 'Layer ' + i + ' Summary',
tab: 'Model Inspection'
};
tfvis.show.layer(layer_surface, our_model.getLayer(undefined, (i)));
}
console.log("Visualized Model Layer Summary")
console.log("Training Dataset");
console.log("Compiling Model");
our_model.compile({
optimizer: tf.train.adam(),
loss: tf.losses.meanSquaredError,
metrics: ['mse'],
});
console.log("Compiled Model");
const history_surface = {
name: "Model Performance",
tab: "Model Performance"
};
const history = [];
console.log("Fitting Dataset. This may take some time, please wait...");
await our_model.fitDataset(batchDataset, {
epochs: epochs,
callbacks: {
onEpochBegin: (epoch, log) => {
console.log("Epoch " + epoch);
},
onBatchBegin: (batch, log) => {
if (batch % 10 == 0) {
console.log("Batch " + batch);
}
},
onEpochEnd: (epoch, log) => {
history.push(log);
console.log("Epoch End " + epoch);
tfvis.show.history(history_surface, history, ['mse', ]);
}
}
});
console.log("Fitted Dataset");
console.log("Trained Dataset");
console.log("Adding Predicted Scores");
const sample_array = await sample_dataset.toArray();
console.log("Getting Sample Array this may take a while");
index = 1;
await Promise.all(sample_array.map(async sample_value => {
//console.log("Iterating values");
const embeddings = await use_model.embed(sample_value.xs);
const embeds_array = await embeddings.array();
//console.log("Embeding sample array index= " + index);
//console.log(embeds_array.length,embeds_array[0].length);
let embeds_title_arr_tensor = tf.tensor1d(embeds_array[0]);
embeds_title_arr_tensor = embeds_title_arr_tensor.reshape([1, batchSize, 512]);
console.log("reshaping sample array index= " + index);
let score = our_model.predict(embeds_title_arr_tensor).flatten();
score = await score.array();
console.log("predicting sample array index= " + index);
score = Math.round(score * round_value) / round_value;
const table_class = score >= 0 ? 'table-success' : 'table-danger';
training_data_prediction_column.style.display = 'block';
document.getElementById('training_label_' + index).innerHTML += "<td class ='" + table_class + "'>" + score + "</td>";
index += 1;
}));
console.log("Visualizing Predictions of validation set");
//TODO: Add this after session
console.log("Visualized Predictions of validation set");
console.log("Added Predicted Scores");
console.log("Opening prediction element");
prediction_element.style['display'] = 'block';
console.log("Making request to API");
var req = new Request(url);
const response = await fetch(req);
console.log("Request recieved");
//console.log(response);
const rjson = await response.json();
console.log("Made JSON from response");
//console.log(rjson);
const articles = rjson.articles;
console.log("Collected Articles")
let titles = [];
const elem = document.getElementById('tableBody');
articles.forEach(article => {
let title_token_arr = article.title.split("-")
title_token_arr = title_token_arr.slice(0, title_token_arr.length - 1);
let title = title_token_arr.join(" ");
//console.log("Processing title " + title);
titles.push(title);
});
console.log("Embedding titles");
let embed_titles = await use_model.embed(titles);
console.log("Embedded titles");
//embed_titles.print(true);
//console.log(await embed_titles.array());
console.log("Embedding Array");
let embed_titles_arr = await embed_titles.array();
//console.log(embed_titles_arr);
console.log("Embedded Array");
for (var i = 0; i < article_stream_length; i++) {
console.log("Predicting from model");
console.log("Converting to tensor1d")
let embed_title_arr_tensor = tf.tensor1d(embed_titles_arr[i]);
//embed_title_arr_tensor.print(true);
console.log("Reshaping tensor");
embed_title_arr_tensor = embed_title_arr_tensor.reshape([1, batchSize, 512])
embed_title_arr_tensor.print(true);
console.log("Sending tensor to model")
let score = our_model.predict(embed_title_arr_tensor).flatten();
console.log("disposing intermediate tensors");
embed_title_arr_tensor.dispose();
score.print(true);
score = await score.array();
score = Math.round(score * round_value) / round_value;
//console.log(score);
console.log("Predicted from model " + score);
const table_class = score >= 0 ? 'table-success' : 'table-danger';
elem.innerHTML += "<tr> <td>" + titles[i] + "</td>" + "<td class='" + table_class + "'>" + score + "</td>";
console.log("Updated titles table for row #" + i);
}
}
async function getEmbeddings(data, model) {
const embeds = await model.embed(data.xs);
const embeds_array = await embeds.array();
embeds.dispose();
return {
xs: tf.tensor1d(embeds_array[0]),
ys: tf.tensor1d(data.ys)
};
}
function createModel() {
const model = tf.sequential();
model.add(tf.layers.dense({
inputShape: [batchSize, 512],
units: 8
}));
model.add(tf.layers.dense({
units: 1
}));
return model;
}
//FUNCTION TO PUT CONSOLE LOG TO HTML PAGE
//SOURCE: https://stackoverflow.com/a/35449256/1941842
(function () {
var old = console.log;
var logger = document.getElementById('log');
console.log = function () {
for (var i = 0; i < arguments.length; i++) {
if (typeof arguments[i] == 'object') {
logger.innerHTML += (JSON && JSON.stringify ? JSON.stringify(arguments[i], undefined, 2) : arguments[i]) + '<br />';
} else {
logger.innerHTML += arguments[i] + '<br />';
}
// Keep new logs focussed
logger.scrollTop = logger.scrollHeight;
}
}
})();
app();