forked from thiyangt/tsdataleaks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
97 lines (62 loc) · 1.86 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
<img src="hex/hexsticker.png" align="right" height="200"/>
# tsdataleaks
R Package for detecting data leakages in time series forecasting competitions.
## Installation
<!--You can install the released version of tsdataleaks from --> <!-- [CRAN](https://CRAN.R-project.org) with: -->
<!--
``` r
install.packages("tsdataleaks")
```
-->
The development version from [GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github("thiyangt/tsdataleaks")
library(tsdataleaks)
```
## Example
To demonstrate the package functions, I created a small data set with 4 time series.
```{r example, comment=NA}
set.seed(2020)
a <- rnorm(15)
d <- rnorm(10)
lst <- list(
a = a,
b = c(a[10:15]+rep(8,6), rnorm(10), a[1:5], a[1:5]),
c = c(rnorm(10), a[1:5]),
d = d,
e = d)
```
## `find_dataleaks`: Exploit data leaks
```{r, comment=NA, message=FALSE, warning=FALSE}
library(tsdataleaks)
library(magrittr)
library(tidyverse)
library(viridis)
# h - I assume test period length is 5 and took that as wind size, h.
f1 <- find_dataleaks(lstx = lst, h=5, cutoff=1)
f1
```
Interpretation: The first element in the list means the last 5 observations of the time series `a` correlates with time series `b` observarion from 2 to 6.
## `viz_dataleaks`: Visualise the data leaks
```{r, comment=NA, message=FALSE, warning=FALSE}
viz_dataleaks(f1)
```
## `reason_dataleaks`
Display the reasons for data leaks and evaluate usefulness of data leaks towards the winning of the competition
```{r, comment=NA, message=FALSE, warning=FALSE}
r1 <- reason_dataleaks(lstx = lst, finddataleaksout = f1, h=5)
r1
```