-
Notifications
You must be signed in to change notification settings - Fork 173
/
Copy pathMountainCar-basic.py
283 lines (202 loc) · 7.14 KB
/
MountainCar-basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# OpenGym MountainCar-v0
# -------------------
#
# This code demonstrates debugging of a basic Q-network (without target network)
# in an OpenGym MountainCar-v0 environment.
#
# Made as part of blog series Let's make a DQN, available at:
# https://jaromiru.com/2016/10/12/lets-make-a-dqn-debugging/
#
# author: Jaromir Janisch, 2016
#--- enable this to run on GPU
# import os
# os.environ['THEANO_FLAGS'] = "device=gpu,floatX=float32"
import random, numpy, math, gym
#-------------------- UTILITIES -----------------------
import matplotlib.pyplot as plt
from matplotlib import colors
import sys
def printQ(agent):
P = [
[-0.15955113, 0. ], # s_start
[ 0.83600049, 0.27574312], # s'' -> s'
[ 0.85796947, 0.28245832], # s' -> s
[ 0.88062271, 0.29125591], # s -> terminal
]
pred = agent.brain.predict( numpy.array(P) )
for o in pred:
sys.stdout.write(str(o[1])+" ")
print(";")
sys.stdout.flush()
def mapBrain(brain, res):
s = numpy.zeros( (res * res, 2) )
i = 0
for i1 in range(res):
for i2 in range(res):
s[i] = numpy.array( [ 2 * (i1 - res / 2) / res, 2 * (i2 - res / 2) / res ] )
i += 1
mapV = numpy.amax(brain.predict(s), axis=1).reshape( (res, res) )
mapA = numpy.argmax(brain.predict(s), axis=1).reshape( (res, res) )
return (mapV, mapA)
def displayBrain(brain, res=50):
mapV, mapA = mapBrain(brain, res)
plt.close()
plt.show()
fig = plt.figure(figsize=(5,7))
fig.add_subplot(211)
plt.imshow(mapV)
plt.colorbar(orientation='vertical')
fig.add_subplot(212)
cmap = colors.ListedColormap(['blue', 'red'])
bounds=[-0.5,0.5,1.5]
norm = colors.BoundaryNorm(bounds, cmap.N)
plt.imshow(mapA, cmap=cmap, norm=norm)
cb = plt.colorbar(orientation='vertical', ticks=[0,1])
plt.pause(0.001)
#-------------------- BRAIN ---------------------------
from keras.models import Sequential
from keras.layers import *
from keras.optimizers import *
class Brain:
def __init__(self, stateCnt, actionCnt):
self.stateCnt = stateCnt
self.actionCnt = actionCnt
self.model = self._createModel()
# self.model.load_weights("MountainCar-basic.h5")
def _createModel(self):
model = Sequential()
model.add(Dense(output_dim=64, activation='relu', input_dim=stateCnt))
model.add(Dense(output_dim=actionCnt, activation='linear'))
opt = RMSprop(lr=0.00025)
model.compile(loss='mse', optimizer=opt)
return model
def train(self, x, y, epoch=1, verbose=0):
self.model.fit(x, y, batch_size=64, nb_epoch=epoch, verbose=verbose)
def predict(self, s):
return self.model.predict(s)
def predictOne(self, s):
return self.predict(s.reshape(1, self.stateCnt)).flatten()
#-------------------- MEMORY --------------------------
class Memory: # stored as ( s, a, r, s_ )
samples = []
def __init__(self, capacity):
self.capacity = capacity
def add(self, sample):
self.samples.append(sample)
if len(self.samples) > self.capacity:
self.samples.pop(0)
def sample(self, n):
n = min(n, len(self.samples))
return random.sample(self.samples, n)
def isFull(self):
return len(self.samples) >= self.capacity
#-------------------- AGENT ---------------------------
MEMORY_CAPACITY = 100000
BATCH_SIZE = 64
GAMMA = 0.99
MAX_EPSILON = 1
MIN_EPSILON = 0.1
LAMBDA = 0.001 # speed of decay
class Agent:
steps = 0
epsilon = MAX_EPSILON
def __init__(self, stateCnt, actionCnt):
self.stateCnt = stateCnt
self.actionCnt = actionCnt
self.brain = Brain(stateCnt, actionCnt)
self.memory = Memory(MEMORY_CAPACITY)
def act(self, s):
if random.random() < self.epsilon:
return random.randint(0, self.actionCnt-1)
else:
return numpy.argmax(self.brain.predictOne(s))
def observe(self, sample): # in (s, a, r, s_) format
self.memory.add(sample)
# ----- debug
if self.steps % 1000 == 0:
printQ(self)
if self.steps % 10000 == 0:
displayBrain(self.brain)
# slowly decrease Epsilon based on our eperience
self.steps += 1
self.epsilon = MIN_EPSILON + (MAX_EPSILON - MIN_EPSILON) * math.exp(-LAMBDA * self.steps)
def replay(self):
batch = self.memory.sample(BATCH_SIZE)
batchLen = len(batch)
no_state = numpy.zeros(self.stateCnt)
states = numpy.array([ o[0] for o in batch ])
states_ = numpy.array([ (no_state if o[3] is None else o[3]) for o in batch ])
p = agent.brain.predict(states)
p_ = agent.brain.predict(states_)
x = numpy.zeros((batchLen, self.stateCnt))
y = numpy.zeros((batchLen, self.actionCnt))
for i in range(batchLen):
o = batch[i]
s = o[0]; a = o[1]; r = o[2]; s_ = o[3]
t = p[i]
if s_ is None:
t[a] = r
else:
t[a] = r + GAMMA * numpy.amax(p_[i])
x[i] = s
y[i] = t
self.brain.train(x, y)
class RandomAgent:
memory = Memory(MEMORY_CAPACITY)
def __init__(self, actionCnt):
self.actionCnt = actionCnt
def act(self, s):
return random.randint(0, self.actionCnt-1)
def observe(self, sample): # in (s, a, r, s_) format
self.memory.add(sample)
def replay(self):
pass
#-------------------- ENVIRONMENT ---------------------
class Environment:
def __init__(self, problem):
self.problem = problem
self.env = gym.make(problem)
high = self.env.observation_space.high
low = self.env.observation_space.low
self.mean = (high + low) / 2
self.spread = abs(high - low) / 2
def normalize(self, s):
return (s - self.mean) / self.spread
def run(self, agent):
s = self.env.reset()
s = self.normalize(s)
R = 0
while True:
# self.env.render()
a = agent.act(s) # map actions; 0 = left, 2 = right
if a == 0:
a_ = 0
elif a == 1:
a_ = 2
s_, r, done, info = self.env.step(a_)
s_ = self.normalize(s_)
if done: # terminal state
s_ = None
agent.observe( (s, a, r, s_) )
agent.replay()
s = s_
R += r
if done:
break
# print("Total reward:", R)
#-------------------- MAIN ----------------------------
PROBLEM = 'MountainCar-v0'
env = Environment(PROBLEM)
stateCnt = env.env.observation_space.shape[0]
actionCnt = 2 #env.env.action_space.n
agent = Agent(stateCnt, actionCnt)
randomAgent = RandomAgent(actionCnt)
try:
while randomAgent.memory.isFull() == False:
env.run(randomAgent)
agent.memory = randomAgent.memory
randomAgent = None
while True:
env.run(agent)
finally:
agent.brain.model.save("MountainCar-basic.h5")