Skip to content

Files

Latest commit

 

History

History
143 lines (109 loc) · 4.8 KB

operator_dev.md

File metadata and controls

143 lines (109 loc) · 4.8 KB

Operator Develop Guide

This document explains how to add a new operator into Tengine.

To add a new operator, you should:

  1. Register the new operator in the directory Tengine/operator/.

    Operator schema defines an interface for the operator's functionality, which is independent of the operator's implemenation. The operator schema defines:

    • op name
    • op inputs and outputs
    • op parameters
    • infershape function: used for tensor shape inference in Prerun stage.
  2. Implement the operator in the directory Tengine/executor/.

    This is the concrete implementation for operator. There can be multiple implementations for different parameters (for example, conv1x1, conv3x3) or architectures (for example, armv8/armv7).

An Example of Scale Operator

In this section, we use Scale operator as our example to show how to add it in Tengine step by step.

Step 1: Add Operator Header File

There are two type of operators:

  • Operator without parameters: template <typename T> OperatorNoParam
  • Operator with parameters: template <typename T, typename P> OperatorWithParam

The scale operator is an operator with parameters.

  • Define Scale class in file operator/include/operator/scale.hpp:
    class Scale: public OperatorWithParam<Scale,ScaleParam> {
    public:
    
        Scale() { name_="Scale"; }
        Scale(const Scale&)= default;
        ~Scale() {}
    
        void SetSchema(void) override;
    };
  • Define ScaleParam in file operator/include/operator/scale_param.hpp:
    struct ScaleParam {
    int   axis;
    int   num_axes;
    int   bias_term;
    
    DECLARE_PARSER_STRUCTURE(ScaleParam) {
        DECLARE_PARSER_ENTRY(axis);
        DECLARE_PARSER_ENTRY(num_axes);
        DECLARE_PARSER_ENTRY(bias_term);
    };
    };

Step 2: Add Operator Cpp File

  • Set operator schema in file operator/operator/scale.cpp:

    void Scale::SetSchema(void)
    {
    Input({"input:float32","gamma:float32","bias:float32"})
    .Output({"output:float32"})
    .SetAttr("axis",1)
    .SetAttr("num_axes",1)
    .SetAttr("bias_term",0)
    .SetDoc(R"DOC(Scale: only caffe flavor scale)DOC");
    }
  • Add obj-y+=scale.o in file operator/operator/Makefile.

Step 3: Register Operator in Operator Plugin

Step 4: Add Implementation in Executor Folder

  • Add the implementation of scale operator in file executor/operator/common/scale.cpp and register the implemetation in the function RegisterScaleNodeExec:

    namespace ScaleImpl 
    {
    struct ScaleOps: public NodeOps 
    {
            bool Run(Node * node)
            {
                // your implementation
            }
        };
    }
    
    using namespace ScaleImpl;
    void RegisterScaleNodeExec(void)
    {
        ScaleOps * ops=new ScaleOps();
    
        NodeOpsRegistryManager::RegisterOPImplementor("common",
                    "Scale",ops);
    }
  • Add obj-y+=scale.o in file executor/operator/common/Makefile.

Step 5: Register Implementation in Executor Plugin

  • Add RegisterScale_NodeExec in file executor/plugin/init.cpp:
        extern void RegisterScale_NodeExec(void);
        RegisterScale_NodeExec();

Step 6: Test Operator Implementation

If you want to test your operator implementation, you can add test in file executor/tests/test_scale.cpp.

Dynamic shape for Operator

Tengine also support dynamic shape for operators. Operators that need to dynamic shape are RPN in faster_rcnn and detection_output in SSD. The following will explain how to implement this method.

  1. Tell the network from which operator, the shape will be computed dynamically. Add

    SetOperatorDynamicShape(op);

    in your loadcaffe function LoadCaffeDetectionOutput() / LoadCaffeRPN() in file serializer/caffe/caffe_serializer.cpp .

  2. Add DynamicProcess and do infer-shape in Run function in file executor/operator/common/rpn.cpp:

    bool Run(Node *node)
    {
        Tensor *output_tensor = node->GetOutputTensor(0);
        TShape &out_shape = output_tensor->GetShape();
    
        // dynamic compute num_box
        // set the output shape here
    
        std::vector<int> outdim={1,num_box,4,1};
        out_shape.SetDim(outdim);
    }