-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhuffman.py
201 lines (154 loc) · 4.69 KB
/
huffman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import re
from tempfile import tempdir
import matplotlib.pyplot as plt
import numpy as np
import heapq
import os
import sys
# from test import freq
class HuffmanCoding:
def __init__(self, path):
self.path = path
self.heap = []
self.codes = {}
self.reverse_mapping = {}
self.frequency = ""
class HeapNode:
# frequency
def __init__(self, char, freq):
self.char = char
self.freq = freq
self.left = None
self.right = None
# defining comparators less_than and equals
def __lt__(self, other):
return self.freq < other.freq
def __eq__(self, other):
if(other == None):
return False
if(not isinstance(other, HeapNode)):
return False
return self.freq == other.freq
# functions for compression:
#[324,222,743]
# def make_frequency_dict(self, text):
# frequency = {}
# another = re.findall("\D+", text)
# for num in numbers:
# if(not num in frequency):
# frequency[num] = 0
# frequency[num] += 1
# for ano in another:
# for char in ano:
# if(not char in frequency):
# frequency[char] = 0
# frequency[char] += 1
# return frequency
def make_frequency_dict(self, text):
frequency={}
numbers = re.findall("\d+", text)
# another = re.findall("\D+", text)
for num in numbers:
if (not num in frequency):
frequency[num] = 0
frequency[num]+=1
# for ano in another:
# for char in ano:
# if (not char in frequency):
# frequency[char] = 0
# frequency[char] += 1
print(frequency)
return frequency
def make_heap(self, frequency):
for key in frequency:
node = self.HeapNode(key, frequency[key])
heapq.heappush(self.heap, node)
def merge_nodes(self):
while(len(self.heap) > 1):
node1 = heapq.heappop(self.heap)
node2 = heapq.heappop(self.heap)
merged = self.HeapNode(None, node1.freq + node2.freq)
merged.left = node1
merged.right = node2
heapq.heappush(self.heap, merged)
def make_codes_helper(self, root, current_code):
if(root == None):
return
if(root.char != None):
self.codes[root.char] = current_code
self.reverse_mapping[current_code] = root.char
return
self.make_codes_helper(root.left, current_code + "0")
self.make_codes_helper(root.right, current_code + "1")
def make_codes(self):
root = heapq.heappop(self.heap)
current_code = ""
self.make_codes_helper(root, current_code)
def get_encoded_text(self, text):
encoded_text = ""
te = re.findall("\d+",text)
print("size of input :"+str(len(te)*8))
print(self.codes)
for character in te:
encoded_text += self.codes[character]
print("size of output :"+str(len(encoded_text)))
print("size of diffrent :"+str((len(te)*8-len(encoded_text))))
return encoded_text
def pad_encoded_text(self, encoded_text):
extra_padding = 8 - len(encoded_text) % 8
for i in range(extra_padding):
encoded_text += "0"
padded_info = "{0:08b}".format(extra_padding)
encoded_text = padded_info + encoded_text
return encoded_text
def get_byte_array(self, padded_encoded_text):
if(len(padded_encoded_text) % 8 != 0):
print("Encoded text not padded properly")
exit(0)
b = bytearray()
for i in range(0, len(padded_encoded_text), 8):
byte = padded_encoded_text[i:i+8]
b.append(int(byte, 2))
return b
def compress(self ):
filename, file_extension = os.path.splitext(self.path)
output_path = filename + ".bin"
output_text_path = filename + "_text.txt"
with open(self.path, 'r+') as file, open(output_path, 'wb') as output, open(output_text_path, 'w') as output_txt:
text = file.read()
text = text.rstrip()
self.frequency = self.make_frequency_dict(text)
# sys.exit()
self.make_heap(self.frequency)
self.merge_nodes()
self.make_codes()
# print(text)
encoded_text = self.get_encoded_text(text)
padded_encoded_text = self.pad_encoded_text(encoded_text)
b = self.get_byte_array(padded_encoded_text)
output_txt.write(encoded_text)
output.write(bytes(b))
print("Compressed")
return output_path
""" functions for convert huffman str to picture: """
def createFrequencyArr(self, frequency_str):
#init new dict arr
frequency={}
#cut all numbers from this string : for example: 32=>44 ,55=>143 convert to [32,44,55,143]
numbers = re.findall("\d+", frequency_str)
#make dict from numbers list
for i in range(0, len(numbers)-1,2):
frequency[numbers[i]]=numbers[i+1]
return frequency
def decompress(self, huffman_str , frequency ):
numbers =""
temp = ""
# make string same => 12 232 13 453
for char in huffman_str:
temp += char
for i in frequency:
if frequency[i] == temp:
numbers += i+" "
temp=""
continue
return numbers