We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Is your feature request related to a problem? Please describe. A DanfoJS Series shift method seems to be missing https://pandas.pydata.org/docs/reference/api/pandas.Series.shift.html
Describe the solution you'd like
I want to convert to JS this Python code
df["Lap"] = ((df["Distance"] - df["Distance"].shift()) < 0).astype(int).cumsum()
Describe alternatives you've considered A clear and concise description of any alternative solutions or features you've considered.
Additional context shift method is very convenient to measure difference between 2 consecutive values.
shift
Here is my full code
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <script src="https://cdn.jsdelivr.net/npm/[email protected]/lib/bundle.min.js"></script> <script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/d3-fetch.min.js"></script> <script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/d3-dsv.min.js"></script> <title>KRP Telemetry</title> </head> <body> <div id="map_div"></div> <div id="plot_div_Engine"></div> <div id="plot_div_CylHeadTemp"></div> <div id="plot_div_WaterTemp"></div> <div id="plot_div_Gear"></div> <div id="plot_div_Speed"></div> <div id="plot_div_LatAcc"></div> <div id="plot_div_LonAcc"></div> <div id="plot_div_Steer"></div> <div id="plot_div_Throttle"></div> <div id="plot_div_Brake"></div> <div id="plot_div_FrontBrakes"></div> <div id="plot_div_Clutch"></div> <div id="plot_div_YawVel"></div> <script> const url = "https://raw.githubusercontent.com/scls19fr/krp_python_telemetry/main/Logdata%20Essay%20mini60%202023-10-31.csv" parsed = fetch(url) .then(response => response.text()) .then(text => { // Normalize line breaks and split segments by double line breaks. const [metaText, columns, rows] = text.replace(/\r?\n/g, "\n").split(/\n\n/); // Parse first meta section as csv, then convert to an object const meta = Object.fromEntries(d3.csvParseRows(metaText)); // Parse the two lines from the headers segment const [headers, units] = d3.csvParseRows(columns); // Parse the rows segment into an untyped array of arrays. const data = d3.csvParseRows(rows); df_head = new dfd.DataFrame([meta]) df_head.print() df_units = new dfd.DataFrame([units], {columns: headers}) df_units.print() df_data = new dfd.DataFrame(data, {columns: headers}); //console.log(df_data); df_data.print(); //df_data["Lap"] = df_data["Distance"].shift(); // ToFix //df_data["Lap"].print(); df_data.plot("map_div").scatter({ config: { x: "PosX", y: "PosY" } }); df_data.plot("plot_div_Engine").line({ config: { x: "Distance", y: "Engine" } }); df_data.plot("plot_div_CylHeadTemp").line({ config: { x: "Distance", y: "CylHeadTemp" } }); df_data.plot("plot_div_WaterTemp").line({ config: { x: "Distance", y: "WaterTemp" } }); df_data.plot("plot_div_Gear").line({ config: { x: "Distance", y: "Gear" } }); df_data.plot("plot_div_Speed").line({ config: { x: "Distance", y: "Speed" } }); df_data.plot("plot_div_LatAcc").line({ config: { x: "Distance", y: "LatAcc" } }); df_data.plot("plot_div_LonAcc").line({ config: { x: "Distance", y: "LonAcc" } }); df_data.plot("plot_div_Steer").line({ config: { x: "Distance", y: "Steer" } }); df_data.plot("plot_div_Throttle").line({ config: { x: "Distance", y: "Throttle" } }); df_data.plot("plot_div_Brake").line({ config: { x: "Distance", y: "Brake" } }); df_data.plot("plot_div_FrontBrakes").line({ config: { x: "Distance", y: "FrontBrakes" } }); df_data.plot("plot_div_Clutch").line({ config: { x: "Distance", y: "Clutch" } }); df_data.plot("plot_div_YawVel").line({ config: { x: "Distance", y: "YawVel" } }); return {meta, headers, units, data}; }) //const df = new dfd.DataFrame({'pig': [20, 18, 489, 675, 1776], // 'horse': [4, 25, 281, 600, 1900]}, {index: [1990, 1997, 2003, 2009, 2014]}) //df.plot("plot_div").line() </script> </body> </html>
The text was updated successfully, but these errors were encountered:
Related #126
Sorry, something went wrong.
No branches or pull requests
Is your feature request related to a problem? Please describe.
A DanfoJS Series shift method seems to be missing
https://pandas.pydata.org/docs/reference/api/pandas.Series.shift.html
Describe the solution you'd like
I want to convert to JS this Python code
Describe alternatives you've considered
A clear and concise description of any alternative solutions or features you've considered.
Additional context
shift
method is very convenient to measure difference between 2 consecutive values.Here is my full code
The text was updated successfully, but these errors were encountered: