-
Notifications
You must be signed in to change notification settings - Fork 0
/
calculate_flow.py
52 lines (45 loc) · 1.83 KB
/
calculate_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import numpy as np
from PIL import Image
import sys
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
sys.path.insert(0, "/home/jayaram/sandbox-image/flownet2-pytorch")
from flownet2_pytorch_official.flownet2_pytorch.models import FlowNet2
from utils.frame_utils import read_gen, flow_to_image
class Args():
fp16 = False
rgb_max = 255.
class FlowNet2Utils():
def __init__(self):
args = Args()
self.net = FlowNet2(args).cuda()
#dict = torch.load("/home/jayaram/mount_ada_node/deep_mpcvs/DeepMPCVS/FlowNet2_checkpoint.pth.tar")
dict = torch.load("/home2/jayaram.reddy/deep_mpcvs/DeepMPCVS/FlowNet2_checkpoint.pth.tar")
self.net.load_state_dict(dict["state_dict"])
def flow_calculate(self, img1, img2):
images = [img1, img2]
images = np.array(images).transpose(3, 0, 1, 2)
im = torch.from_numpy(images.astype(np.float32)).unsqueeze(0).cuda()
result = self.net(im).squeeze()
data = result.data.cpu().numpy().transpose(1, 2, 0)
return data
def writeFlow(self, name, flow):
f = open(name, 'wb')
f.write('PIEH'.encode('utf-8'))
np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f)
flow = flow.astype(np.float32)
flow.tofile(f)
f.flush()
f.close()
def save_flow_with_image(self, folder):
img_source_path = folder + "/initial_image.png"
img_goal_path = folder + "/desired_image.png"
img_src = read_gen(img_source_path)
img_goal = read_gen(img_goal_path)
f12 = self.flow_calculate(img_src, img_goal)
self.writeFlow(folder + "/flow.flo", f12)
flow_image = flow_to_image(f12)
im = Image.fromarray(flow_image)
im.save(folder + "/flow.png")