-
Notifications
You must be signed in to change notification settings - Fork 0
/
habitatenv.py
230 lines (198 loc) · 9.19 KB
/
habitatenv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from locale import normalize
import os
import random
import math
import pickle
import transformations_tf as tft
import numpy as np
import magnum as mn
from PIL import Image
from settings import default_sim_settings, make_cfg
from habitat_sim.scene import SceneNode
from utils.frame_utils import read_gen
import matplotlib.pyplot as plt
import habitat_sim
import habitat_sim.agent
from habitat_sim.utils.common import (
quat_from_angle_axis,
quat_from_magnum,
quat_to_magnum,
)
from habitat_sim.utils.data import ImageExtractor
class HabitatEnv():
# For viewing the extractor output
def display_sample(sample):
img = sample["rgba"]
depth = sample["depth"]
semantic = sample["semantic"]
arr = [img, depth, semantic]
titles = ["rgba", "depth", "semantic"]
plt.figure(figsize=(12, 8))
for i, data in enumerate(arr):
ax = plt.subplot(1, 3, i + 1)
ax.axis("off")
ax.set_title(titles[i])
plt.imshow(data)
plt.show()
def __init__(self, folder, init_state, depth_type):
#take a habitat scene and create configuration.
#scene_glb = folder + "/habitat-test-scenes/van-gogh-room.glb"
scene_glb = folder + "/habitat_test_scenes/van-gogh-room.glb"
#create habitat sim conf from (sim backend,agent) conf
self._cfg = make_cfg(scene_glb)
#initialize agent state in sim after creating sim instance using sim conf in below init_common fn
self.init_common(init_state)
self.depth_type = depth_type
agent_node = self._sim.agents[0].scene_node
self.agent_object_id = self._sim.get_rigid_object_manager().add_object_by_template_id(1, agent_node) #error here
self.agent_object_id.motion_type = habitat_sim.physics.MotionType.KINEMATIC
#self._sim.get_rigid_object_manager().set_object_motion_type(
# habitat_sim.physics.MotionType.KINEMATIC, self.agent_object_id
#)
assert (
#self._sim.get_rigid_object_manager().get_object_motion_type(self.agent_object_id)
self.agent_object_id.motion_type
== habitat_sim.physics.MotionType.KINEMATIC
)
# Saving Start Frame
observations = self._sim.get_sensor_observations()
self.save_color_observation(observations, 0, 0, folder)
self.save_depth_observation(observations, 0, 0, folder)
self.noise = False
#self.translation_noise = pickle.load(open("actuation_noise_fwd.pkl", 'rb'))
#self.rotation_left_noise = pickle.load(open("actuation_noise_left.pkl", 'rb'))
#self.rotation_right_noise = pickle.load(open("actuation_noise_right.pkl", 'rb'))
def init_common(self, init_state):
self._sim = habitat_sim.Simulator(self._cfg) #create sim instance using conf of (agent + sim backend)
random.seed(default_sim_settings["seed"])
self._sim.seed(default_sim_settings["seed"])
start_state = self.init_agent_state(default_sim_settings["default_agent"], init_state) #initialize agent state in sim
return start_state
def init_agent_state(self, agent_id, init_state):
start_state = habitat_sim.agent.AgentState()
x, y, z, w, p, q, r = init_state
start_state.position = np.array([x, y, z]).astype('float32')
#start_state.rotation = np.quaternion(w,p,q,r, normalize = True)
start_state.rotation = np.quaternion(w,p,q,r)
agent = self._sim.initialize_agent(agent_id, start_state)
start_state = agent.get_state()
return start_state
def get_agent_pose(self):
agent = self._sim._default_agent
state = agent.get_state()
position = state.position
rotation = state.rotation
pose = [position[0], position[1], position[2], rotation.w, rotation.x, rotation.y, rotation.z]
return pose
def save_color_observation(self, obs, frame, step, folder):
color_obs = obs["color_sensor"]
color_img = Image.fromarray(color_obs, mode="RGBA")
color_img.save(folder + "/results/test.rgba.%05d.%05d.png" % (frame, step))
color_img = read_gen(folder + "/results/test.rgba.%05d.%05d.png" % (frame, step))
if self.depth_type == 'FLOW':
if frame == 1:
prev_color_img = read_gen(folder + "/results/test.rgba.%05d.%05d.png" % (frame-1, step-1))
return color_img, prev_color_img
elif frame > 1:
prev_color_img = read_gen(folder + "/results/test.rgba.%05d.%05d.png" % (frame-1, step))
return color_img, prev_color_img
else:
return color_img, color_img
elif self.depth_type == 'TRUE':
return color_img
def save_depth_observation(self, obs, frame, step, folder):
depth_obs = obs["depth_sensor"]
depth_img = Image.fromarray(
(depth_obs / 10 * 255).astype(np.uint8), mode="L"
)
depth_img.save(folder + "/results/test.depth.%05d.%05d.png" % (frame, step))
depth_img = plt.imread(folder + "/results/test.depth.%05d.%05d.png" % (frame, step))
return depth_img
def agent_controller(self, agent, velocity):
vel_control = self.agent_object_id.velocity_control
#vel_control = self._sim.get_object_velocity_control(self.agent_object_id) #not working
print("Normal Velocity:", velocity)
if self.noise:
t_noise = self.translation_noise.sample()[0][0] # 1 x 3 []
velocity[0] += t_noise[0]
velocity[1] += t_noise[0]
velocity[2] += t_noise[0]
velocity[3] += (t_noise[1] - t_noise[2])
velocity[4] += (t_noise[1] - t_noise[2])
velocity[5] += (t_noise[1] - t_noise[2])
noise_left = self.rotation_left_noise.sample()[0][0]
noise_right = self.rotation_right_noise.sample()[0][0]
r_noise = noise_left - noise_right
velocity[0] += r_noise[0]
velocity[1] += r_noise[0]
velocity[2] += r_noise[0]
velocity[3] += (r_noise[1] - r_noise[2])
velocity[4] += (r_noise[1] - r_noise[2])
velocity[5] += (r_noise[1] - r_noise[2])
noise = np.random.normal(0, 0.1, 6)
velocity += noise
#0.05, 0.1
print("Noise Velocity:", velocity)
vel_control.linear_velocity = np.array(velocity[0:3])
vel_control.angular_velocity = np.array(velocity[3:])
vel_control.controlling_lin_vel = True
vel_control.controlling_ang_vel = True
# step with world time
self._sim.step_physics(0.00416)
vel_control.lin_vel_is_local = True
vel_control.ang_vel_is_local = True
def example(self, vel, frame=1,folder=''):
'''
vel : n x 6 velocity vector
'''
vel[:, 2] = -vel[:, 2] # conventions Z axis
vel[:, 1] = -vel[:, 1] # conventions Y axis
vel[:, 5] = -vel[:, 5] # conventions Z axis
vel[:, 4] = -vel[:, 4] # conventions Y axis
#vel[:, 0] = -vel[:, 0] # conventions
agent_id = default_sim_settings["default_agent"]
agent = self._sim._default_agent
color_img = None
depth_img = None
for i in range(vel.shape[0]):
state = agent.get_state()
self.agent_controller(agent, vel[i])
observations = self._sim.get_sensor_observations()
if self.depth_type == 'FLOW':
color_img , prev_color_img = self.save_color_observation(observations, frame, i + 1, folder)
elif self.depth_type == 'TRUE':
color_img = self.save_color_observation(observations, frame, i + 1, folder)
depth_img = self.save_depth_observation(observations, frame, i + 1, folder)
if self.depth_type == 'TRUE':
return color_img, depth_img
elif self.depth_type == 'FLOW':
return color_img, prev_color_img , depth_img
def example_generate_video(self, vel, frame=1,folder=''):
'''
vel : n x 6 velocity vector
'''
# vel[:, 2] = -vel[:, 2] # conventions Z axis
# vel[:, 1] = -vel[:, 1] # conventions Y axis
# vel[:, 5] = -vel[:, 5] # conventions Z axis
# vel[:, 4] = -vel[:, 4] # conventions Y axis
#vel[:, 0] = -vel[:, 0] # conventions
agent_id = default_sim_settings["default_agent"]
agent = self._sim._default_agent
color_img = None
depth_img = None
for i in range(vel.shape[0]):
state = agent.get_state()
self.agent_controller(agent, vel[i])
observations = self._sim.get_sensor_observations()
if self.depth_type == 'FLOW':
color_img , prev_color_img = self.save_color_observation(observations, frame, i + 1, folder)
elif self.depth_type == 'TRUE':
color_img = self.save_color_observation(observations, frame, i + 1, folder)
depth_img = None
if self.depth_type == 'TRUE':
return color_img, depth_img
elif self.depth_type == 'FLOW':
return color_img, prev_color_img , depth_img
def end_sim(self):
self._sim.close()
del self._sim