Skip to content

Latest commit

 

History

History
63 lines (48 loc) · 1.63 KB

README.md

File metadata and controls

63 lines (48 loc) · 1.63 KB

NL2SQL-BERT

LICENSE

Content Enhanced BERT-based Text-to-SQL Generation https://arxiv.org/abs/1910.07179

Run

1, Data prepare:

data_and_model/output_entity.py

2, Train and eval:

train.py

Results on BERT-Base-Uncased without EG

Model Dev
logical form
accuracy
Dev
execution
accuracy
Test
logical form
accuracy
Test
execution
accuracy
SQLova 80.6 86.5 80.0 85.5
Our Methods 84.3 90.3 83.7 89.2

Data

One data look:

{
	"table_id": "1-1000181-1",
	"phase": 1,
	"question": "Tell me what the notes are for South Australia ",
	"question_tok": ["Tell", "me", "what", "the", "notes", "are", "for", "South", "Australia"],
	"sql": {
		"sel": 5,
		"conds": [
			[3, 0, "SOUTH AUSTRALIA"]
		],
		"agg": 0
	},
	"query": {
		"sel": 5,
		"conds": [
			[3, 0, "SOUTH AUSTRALIA"]
		],
		"agg": 0
	},
	"wvi_corenlp": [
		[7, 8]
	],
	"bertindex_knowledge": [0, 0, 0, 0, 4, 0, 0, 1, 3],
	"header_knowledge": [2, 0, 0, 2, 0, 1]
}

All origin data:

https://drive.google.com/file/d/1iJvsf38f16el58H4NPINQ7uzal5-V4v4

Trained model

https://drive.google.com/open?id=18MBm9qzobTBgWPZlpA2EErCQtsMhlTN2

Reference

https://github.com/naver/sqlova