-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdisagg_test.R
385 lines (275 loc) · 15.8 KB
/
disagg_test.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
library(rgcam)
library(dplyr)
options(dplyr.summarise.inform = FALSE)
library(tidyr)
library(stringr)
library(readr)
setwd(FOLDER_LOCATION)
#source("functions.R")
#source("main.R")
final_fuel_CO2_disag <- function(all_emissions){
sectors <- read_csv('input/sector_label.csv')
elec_gen_fuels <- read_csv('input/elec_generation.csv')
#temporary until we can query inputs by tech directly
inputs_by_tech <- read_csv('inputs_by_tech.csv') %>%
pivot_longer(cols = '1990':'2100',names_to = 'year') %>%
mutate(scenario = gsub("(.*),.*", "\\1", scenario))
CO2_sequestration_by_tech <- read_csv('CO2_sequestration_by_tech.csv') %>%
pivot_longer(cols = '1990':'2100',names_to = 'year') %>%
mutate(scenario = gsub("(.*),.*", "\\1", scenario))
sectors %>%
filter(type == 'transformation') %>%
distinct(rewrite) -> transformation_sectors
sectors_elec <- sectors %>%
filter(rewrite == 'electricity')
inputs_by_subsector <- rgcam::getQuery(prj, "inputs by subsector")
all_emissions %>%
select(scenario,region,year,direct,transformation,enduse,ghg,value,Units) %>%
filter(ghg == 'CO2') -> CO2_emiss
CO2_emiss_transform <- CO2_emiss %>%
filter(direct %in% transformation_sectors$rewrite)
#first deal with electricity
all_emissions %>%
select(scenario,region,direct,transformation,enduse,year,value,ghg,Units) %>%
filter((direct != 'electricity') | (ghg != 'CO2')) -> all_emiss_no_elec_CO2
CO2_emiss_elec <- CO2_emiss_transform %>%
filter(direct == 'electricity')
CO2 %>%
filter(sector %in% sectors_elec$sector) %>%
group_by(region,scenario,year) %>%
mutate(normfrac = value/sum(value)) %>%
ungroup() %>%
select(-value,-Units) -> tmp
tmp%>%
left_join(CO2_emiss_elec, by = c('scenario','region','year')) %>%
mutate(value = value * normfrac) %>%
left_join(elec_gen_fuels, by = c('sector')) %>%
filter(year >= 2005) %>%
group_by(scenario,region,fuel,direct,transformation,enduse,year) %>%
summarise(value = sum(value)) %>%
ungroup() %>%
arrange(year) %>%
mutate(direct = fuel,
transformation = if_else(fuel == 'backup_electricity',fuel,transformation),
direct = if_else(fuel == 'backup_electricity','natural gas',direct),#assign backup electricity to gas since natural gas open cycle is the only tech for this sector
ghg = 'CO2',
Units = 'MTCO2e') %>%
select(-fuel) -> elec_CO2_no_bio_final
print("Allocated electricity emissions by fuel")
#### disagregate transportation tailpipe emissions ###
transport_sectors <- read_csv('input/transport.csv')
ccoef_mapping <- read_csv('input/ccoef_mapping.csv')
inputs_by_subsector %>% #get all sectors using refined liquids (incl. non transportation)
filter(input %in% c('refined liquids industrial','refined liquids enduse'),
!(sector %in% c('elec_refined liquids (CC)','elec_refined liquids (CC CCS)','elec_refined liquids (steam/CT)'))) %>%
mutate(subsector = if_else(subsector == 'refined liquids',sector,subsector)) %>%
distinct(subsector)-> refined_liquids_subsector
all_emiss_no_elec_CO2 %>%
filter(((enduse %in% transport_sectors$transportation_subsector & direct == 'refining') | direct %in% transport_sectors$transportation_subsector) & ghg == 'CO2') %>%
select(-transformation)-> trn_CO2
## Filter to get fuels with tailpipe emissions (i.e., natural gas + refined liquids)
trn_inputs_by_subsector <- inputs_by_subsector %>%
filter(subsector %in% transport_sectors$transportation_subsector,
input %in% c('refined liquids enduse','delivered gas','refined liquids industrial')) %>%
rename(enduse = subsector,
PrimaryFuelCO2Coef.name = input) %>%
left_join(ccoef_mapping,by = c('PrimaryFuelCO2Coef.name')) %>%
mutate(transformation = if_else((PrimaryFuelCO2Coef.name == 'refined liquids enduse' | PrimaryFuelCO2Coef.name == 'refined liquids industrial'),'refining',
if_else(PrimaryFuelCO2Coef.name == 'delivered gas','gas processing',NA_character_)),
tailpipe_emiss = value * PrimaryFuelCO2Coef) %>%
group_by(scenario,region,enduse,year) %>%
mutate(frac_tailpipe_emiss = tailpipe_emiss / sum(tailpipe_emiss)) %>%
ungroup() %>%
select(-sector,-PrimaryFuelCO2Coef.name,-value,-PrimaryFuelCO2Coef,-fuel,-tailpipe_emiss,-Units)
trn_inputs_by_subsector %>%
left_join(trn_CO2,by = c('scenario','region','enduse','year')) %>%
mutate(value = value * frac_tailpipe_emiss,
fuel = if_else(transformation == 'refining','refining',
if_else(transformation == 'gas processing','natural gas',NA_character_)),
direct = fuel) %>%
select(-frac_tailpipe_emiss,-fuel) %>%
filter(year >= 2005) %>%
group_by(scenario,region,direct,transformation,enduse,year,ghg,Units) %>%
summarize(value = sum(value)) %>%
ungroup() -> trn_tailpipe_CO2_disag
trn_tailpipe_CO2_disag %>%
distinct(enduse) -> trn_sectors
all_emiss_no_elec_or_trn_CO2 <- all_emiss_no_elec_CO2 %>%
filter(!((enduse %in% transport_sectors$transportation_subsector & direct == 'refining') |
direct %in% transport_sectors$transportation_subsector) |
ghg != 'CO2')
CO2_sequestration_by_tech$year <- as.numeric(CO2_sequestration_by_tech$year)
CO2_sequestration_by_tech %>%
filter(sector == 'refining') %>%
mutate(fuel = if_else(subsector == 'biomass liquids','biomass',
if_else(subsector == 'coal to liquids','coal',NA_character_))) %>%
group_by(scenario,region,fuel,year) %>%
summarize(sum_seq = sum(value)) %>%
ungroup()-> refining_c_csq
inputs_by_subsector %>%
filter((sector == 'refining') & (input != 'elect_td_ind')) %>%
rename(PrimaryFuelCO2Coef.name = input) %>%
left_join(ccoef_mapping,by = c('PrimaryFuelCO2Coef.name')) %>%
mutate(c_input = value * PrimaryFuelCO2Coef) %>%
group_by(scenario,region,year,fuel) %>%
summarize(c_input = sum(c_input)) %>%
ungroup() %>%
left_join(refining_c_csq,by = c('scenario','region','year','fuel')) %>%
mutate(c_input = if_else(fuel == 'biomass',0,c_input),
sum_seq = if_else(is.na(sum_seq),0,sum_seq),
emiss_no_bio = c_input - sum_seq) -> refining_emiss_by_fuel_no_bio
refining_emiss_by_fuel_no_bio %>%
group_by(scenario,region,year) %>%
mutate(normfrac = emiss_no_bio/sum(emiss_no_bio),
transformation = 'refining',
ghg = 'CO2') %>%
select(-sum_seq,-c_input,-emiss_no_bio) -> refining_emiss_by_fuel_no_bio_norm
refining_emiss_by_fuel_no_bio_norm %>%
left_join(trn_tailpipe_CO2_disag,by = c('scenario','region','year','transformation','ghg')) %>%
mutate(direct = fuel,
value = value*normfrac) %>%
filter(year >= 2005) %>%
select(-fuel,-normfrac) -> trn_tailpipe_CO2_disag
## Now disaggregate hydrogen no bio emissions
all_emiss_no_elec_or_trn_CO2 %>%
filter(direct != 'H2 enduse' | ghg != 'CO2') -> all_emiss_no_elec_or_trn_no_H2_CO2
all_emiss_no_elec_or_trn_CO2 %>%
filter(direct == 'H2 enduse' & ghg == 'CO2') -> H2_CO2_emiss
inputs_by_subsector %>%
filter(sector == 'H2 central production' | sector == 'H2 forecourt production') %>%
rename(PrimaryFuelCO2Coef.name = input) %>%
left_join(ccoef_mapping,by = c('PrimaryFuelCO2Coef.name')) %>%
mutate(PrimaryFuelCO2Coef = if_else(is.na(PrimaryFuelCO2Coef) | fuel == 'biomass',0,PrimaryFuelCO2Coef),
fuel = if_else(is.na(fuel),PrimaryFuelCO2Coef.name,fuel),
c_input = value * PrimaryFuelCO2Coef) %>%
group_by(scenario,region,year,fuel) %>%
summarize(c_input = sum(c_input)) %>%
ungroup() -> H2_inputs
CO2_sequestration_by_tech %>%
filter(sector == 'H2 central production' | sector == 'H2 forecourt production') %>%
mutate(fuel = if_else(subsector == 'gas','natural gas',subsector)) %>%
rename(c_seq = value)-> H2_sequestration
H2_inputs %>%
left_join(H2_sequestration %>%
select(-sector,-subsector,-technology),by = c('scenario','region','year','fuel')) %>%
filter(!is.na(Units)) %>%
mutate(emiss_no_bio = c_input - c_seq) %>% #mutate to H2 production (the actual transformation) occurs at the end
group_by(scenario,region,year) %>%
mutate(normfrac = emiss_no_bio / sum(emiss_no_bio)) %>%
select(-Units) -> H2_inputs_joined
H2_inputs_joined %>%
left_join(H2_CO2_emiss, by = c('scenario','region','year')) %>%
mutate(direct = fuel,
value = value * normfrac) %>%
select(-c_input,-c_seq,-emiss_no_bio,-fuel,-normfrac) -> H2_CO2_emiss_disag
#deal with all remaining CO2 emissions
#break out H2 and refining emissions to be dealt with downstream
c_containing <- c('biomass','coal','natural gas','gas processing','cement limestone','crude oil','CO2 removal')
#all_emissions %>% select(scenario,region,direct,year,transformation,enduse,ghg,value,Units) %>%
all_emiss_no_elec_or_trn_no_H2_CO2 %>%
filter(!(direct %in% c_containing) & ghg == 'CO2') -> remaining_industry_CO2
#all_emissions %>% select(scenario,region,direct,year,transformation,enduse,ghg,value,Units) %>%
all_emiss_no_elec_or_trn_no_H2_CO2 %>%
filter(!(!(direct %in% c_containing) & ghg == 'CO2')) -> all_emiss_no_elec_or_trn_no_H2_CO2
inputs_by_subsector %>%
filter(sector %in% remaining_industry_CO2$direct) %>%
rename(PrimaryFuelCO2Coef.name = input) %>%
mutate(PrimaryFuelCO2Coef.name = if_else(PrimaryFuelCO2Coef.name == 'process heat dac','wholesale gas',PrimaryFuelCO2Coef.name)) %>%
left_join(ccoef_mapping,by = c('PrimaryFuelCO2Coef.name')) %>%
mutate(fuel = if_else(PrimaryFuelCO2Coef.name %in% c('elect_td_ind','elect_td_bld'),'electricity',
if_else(PrimaryFuelCO2Coef.name == 'H2 enduse','H2 enduse',
if_else(PrimaryFuelCO2Coef.name %in% c('refined liquids industrial','refined liquids enduse'),'refining',fuel))),
PrimaryFuelCO2Coef = if_else(is.na(PrimaryFuelCO2Coef),0,PrimaryFuelCO2Coef),
PrimaryFuelCO2Coef = if_else(fuel == 'biomass',0,PrimaryFuelCO2Coef),
c_input = value * PrimaryFuelCO2Coef) %>%
filter(!is.na(c_input)) %>%
group_by(scenario,region,sector,year) %>%
mutate(sum_c = sum(c_input),
normfrac = c_input/sum_c) %>%
ungroup() %>%
rename(direct = sector) -> remaining_industry_inputs
remaining_industry_inputs %>%
select(-PrimaryFuelCO2Coef,-c_input,-sum_c,-PrimaryFuelCO2Coef.name,-subsector,-value,-Units) %>%
left_join(remaining_industry_CO2,by = c('scenario','region','year','direct')) %>%
mutate(value = value * normfrac,
value = if_else(is.na(value),0,value),
ghg = 'CO2',
Units = 'MTCO2e',
enduse = if_else(is.na(enduse),direct,enduse),
direct = fuel,
transformation = if_else(fuel == 'electricity' | fuel == 'H2 enduse' | fuel == 'refining' | fuel == 'district heat',fuel,transformation)) %>%
select(-normfrac,-fuel) %>%
filter(year >= 2005,
!(direct %in% c('electricity','H2 enduse'))) -> remaining_industry_disag_w_refining #filter out electricity + hydrogen since these are already accounted for elsewhere
remaining_industry_disag_w_refining %>%
filter(direct == 'refining') -> refining_ind_for_disag
remaining_industry_disag_w_refining %>%
filter(direct != 'refining') -> remaining_industry_CO2_no_refining
refining_emiss_by_fuel_no_bio_norm %>%
left_join(refining_ind_for_disag,by = c('scenario','region','year','ghg','transformation')) %>%
filter(year >= 2005) %>%
mutate(direct = fuel,
value = value * normfrac) %>%
select(-fuel,-normfrac) -> remaining_industry_refining_disag
remaining_industry_disag <- bind_rows(remaining_industry_refining_disag,remaining_industry_CO2_no_refining)
## Final processing #
#Fix cement emissions to separate out process heat (fossil fuel) from limestone-related emissions
df <- bind_rows(all_emiss_no_elec_or_trn_no_H2_CO2,
trn_tailpipe_CO2_disag,
elec_CO2_no_bio_final,
H2_CO2_emiss_disag,
remaining_industry_disag) %>%
mutate(direct = if_else(direct == 'cement limestone','limestone',direct),
transformation = if_else(transformation == 'cement limestone','calcination',transformation),
enduse = if_else(enduse == 'cement limestone','cement',enduse)) %>%
mutate(direct = if_else((direct == 'gas processing') & (ghg == 'CO2'),'natural gas',direct),#assign all direct gas processing CO2 emissions to natural gas since we're using emissions no bio query and bio constitutes a very small fraction of gas processing anyway
direct = if_else(direct == 'H2 enduse','H2 production',direct),
transformation = if_else(transformation == 'H2 enduse','H2 production',transformation),
transformation = if_else(direct == 'natural gas' & transformation != 'electricity' & transformation != 'H2 production' & transformation != 'refining','gas processing',transformation)) %>%
group_by(scenario,region,direct,transformation,enduse,year,ghg,Units) %>%
summarize(value = sum(value)) %>%
ungroup() #%>%
#pivot_wider(names_from = year, values_from = value, values_fill = list(value = 0))
return(df)
}
final_fuel_nonCO2_disag <- function(all_emissions) {
transport <- read_csv('input/transport.csv')
all_emissions %>%
filter(ghg %in% c('CH4','N2O') & direct == transformation & transformation == enduse) -> combustion_non_CO2_emiss
all_emissions %>%
filter(!(ghg %in% c('CH4','N2O') & direct == transformation & transformation == enduse)) -> all_other_emiss #for mergeback
#temporary until we can query directly on the cluster
nonCO2_emissions_by_tech <- read_csv('nonCO2_emissions_by_tech.csv') %>%
pivot_longer(cols = '1990':'2100',names_to = 'year') %>%
mutate(scenario = gsub("(.*),.*", "\\1", scenario))
nonCO2_combustion_emissions_by_tech <- nonCO2_emissions_by_tech %>%
rename(ghg = GHG) %>%
filter(ghg %in% c('CH4','N2O'),
sector != 'UnmanagedLand') %>%
mutate(sector = if_else(subsector %in% transport$transportation_subsector,subsector,sector),
fuel = if_else(technology %in% c('Liquids','NG','Coal','biomass'),technology,subsector),
fuel = if_else(fuel %in% c('gas','NG'),'natural gas',fuel),
fuel = if_else(fuel %in% c('Liquids'),'refined liquids',fuel)) %>%
filter(!(sector %in% c('H2 central production','district heat','electricity','refining'))) %>% #filter out transformation sector as these are dealt with already
group_by(scenario,region,sector,ghg,year) %>%
mutate(normfrac = value / sum(value)) %>%
ungroup() %>%
mutate(year = as.numeric(year),
normfrac = if_else(is.na(normfrac),0,normfrac)) %>%
rename(enduse = sector)
nonCO2_combustion_emissions_by_tech %>%
select(-Units,-technology,-subsector,-value) %>%
left_join(combustion_non_CO2_emiss, by = c('scenario','region','year','enduse','ghg')) %>%
filter(year >= 2005,
Units != is.na(Units)) %>%
mutate(value = value * normfrac,
direct = fuel) %>%
select(-normfrac,-fuel) -> combustion_non_CO2_emiss_disag
all_emiss_w_nonCO2_comb_disag <- bind_rows(combustion_non_CO2_emiss_disag,all_other_emiss)
all_emiss_w_nonCO2_comb_disag %>%
select(scenario,region,direct,transformation,enduse,ghg,year,value,Units) %>%
group_by(scenario,region,direct,transformation,enduse,ghg,year,Units) %>%
summarize(value = sum(value)) %>% #sum combustion and resource extraction emissions for some sectors
ungroup() -> all_emiss_w_nonCO2_comb_disag_distinct
return(all_emiss_w_nonCO2_comb_disag_distinct)
}