-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
51 lines (44 loc) · 1.86 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import pandas as pd
import streamlit as st
import pickle
import requests
def poster(movie_id):
response=requests.get('https://api.themoviedb.org/3/movie/{}?api_key=b453b9cc79800c0b1208a896939a12e1'.format(movie_id))
data=response.json()
poster_path= data['poster_path']
full_path = "https://image.tmdb.org/t/p/w500/" + poster_path
return full_path
def recommend(movie):
index = movies[movies['title'] == movie].index[0]
distances=similarity[index]
movies_list=sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6]
recommended_movies=[]
recommended_movie_posters = []
for i in movies_list:
movie_id=movies.iloc[i[0]].movie_id
recommended_movies.append(movies.iloc[i[0]].title)
recommended_movie_posters.append(poster(movie_id))
return recommended_movies,recommended_movie_posters
similarity=pickle.load(open('similarity.pkl','rb'))
st.title('Movie Recommendation System')
movies_dict=pickle.load(open('movie_dict.pkl','rb'))
movies=pd.DataFrame(movies_dict)
movie_name=st.selectbox('Select a movie',movies['title'].values)
if st.button('Recommend'):
recommended_movie_names, recommended_movie_posters = recommend(movie_name)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.text(recommended_movie_names[0])
st.image(recommended_movie_posters[0])
with col2:
st.text(recommended_movie_names[1])
st.image(recommended_movie_posters[1])
with col3:
st.text(recommended_movie_names[2])
st.image(recommended_movie_posters[2])
with col4:
st.text(recommended_movie_names[3])
st.image(recommended_movie_posters[3])
with col5:
st.text(recommended_movie_names[4])
st.image(recommended_movie_posters[4])