forked from graphdeco-inria/gaussian-splatting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
render.py
122 lines (101 loc) · 5.37 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
from PIL import Image
from scene.dataset_readers import CameraInfo
from utils.graphics_utils import focal2fov, fov2focal
from utils.camera_utils import cameraList_from_camInfos
import numpy as np
from typing import List
def render_set(model_path, name, iteration, views, gaussians, pipeline, background):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
rendering = render(view, gaussians, pipeline, background)["render"]
gt = view.original_image[0:3, :, :]
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
torchvision.utils.save_image(gt, os.path.join(gts_path, '{0:05d}'.format(idx) + ".png"))
def render_set_no_gt(model_path, name, iteration, views, gaussians, pipeline, background):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
makedirs(render_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
rendering = render(view, gaussians, pipeline, background)["render"]
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool,
custom_cameras: List[CameraInfo]):
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
if not skip_train:
render_set(dataset.model_path, "train", scene.loaded_iter, scene.getTrainCameras(), gaussians, pipeline, background)
if not skip_test:
render_set(dataset.model_path, "test", scene.loaded_iter, scene.getTestCameras(), gaussians, pipeline, background)
if custom_cameras:
render_set_no_gt(dataset.model_path, "custom", scene.loaded_iter, custom_cameras, gaussians, pipeline, background)
def get_cam_infos(trajectory: torch.Tensor,
input_width: int, input_height: int, input_focal_length: float):
cam_infos: List[CameraInfo] = []
for i in range(trajectory.shape[0]):
transform = np.linalg.inv(trajectory[i, :, :].numpy())
width = input_width
height = input_height
focal_length = input_focal_length
FovX = focal2fov(focal_length, width)
FovY = focal2fov(focal_length, height)
# create a dummy gt image with all pixels being zero
cam_info = CameraInfo(uid=0,
R=np.transpose(transform[:3, :3]), T=transform[:3, 3],
FovX=FovX, FovY=FovY, width=width, height=height,
image=Image.fromarray(np.zeros((height, width, 3), dtype=np.byte), "RGB"),
image_path="", image_name=f"frame_{i:03}")
cam_infos.append(cam_info)
return cam_infos
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--camera_trajectory", type=str, default="", help="A camera trajectory file saved as torch.save(), in shape [N, 4, 4]")
parser.add_argument("--camera_parameters", type=str, default="976,544,581.743", help="width,height,focal: a comma separated list of numbers")
args = get_combined_args(parser)
print("Rendering " + args.model_path)
# Enable custom trajectory rendering will disable train/test renders
custom_cameras = []
if args.camera_trajectory:
args.skip_test = True
args.skip_train = True
width, height, focal = args.camera_parameters.split(",")
width = int(width)
height = int(height)
focal = float(focal)
camera_info = get_cam_infos(torch.load(args.camera_trajectory), width, height, focal)
custom_cameras = cameraList_from_camInfos(camera_info, 1.0, args)
# Initialize system state (RNG)
safe_state(args.quiet)
render_sets(model.extract(args), args.iteration, pipeline.extract(args), args.skip_train, args.skip_test, custom_cameras)