-
Notifications
You must be signed in to change notification settings - Fork 76
/
Octree.hpp
851 lines (711 loc) · 25.5 KB
/
Octree.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
#ifndef UNIBN_OCTREE_H_
#define UNIBN_OCTREE_H_
// Copyright (c) 2015 Jens Behley, University of Bonn
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
#include <stdint.h>
#include <cassert>
#include <cmath>
#include <cstring> // memset.
#include <limits>
#include <vector>
// needed for gtest access to protected/private members ...
namespace
{
class OctreeTest;
}
namespace unibn
{
/**
* Some traits to access coordinates regardless of the specific implementation of point
* inspired by boost.geometry, which needs to be implemented by new points.
*
*/
namespace traits
{
template <typename PointT, int D>
struct access
{
};
template <class PointT>
struct access<PointT, 0>
{
static float get(const PointT& p)
{
return p.x;
}
};
template <class PointT>
struct access<PointT, 1>
{
static float get(const PointT& p)
{
return p.y;
}
};
template <class PointT>
struct access<PointT, 2>
{
static float get(const PointT& p)
{
return p.z;
}
};
}
/** convenience function for access of point coordinates **/
template <int D, typename PointT>
inline float get(const PointT& p)
{
return traits::access<PointT, D>::get(p);
}
/**
* Some generic distances: Manhattan, (squared) Euclidean, and Maximum distance.
*
* A Distance has to implement the methods
* 1. compute of two points p and q to compute and return the distance between two points, and
* 2. norm of x,y,z coordinates to compute and return the norm of a point p = (x,y,z)
* 3. sqr and sqrt of value to compute the correct radius if a comparison is performed using squared norms (see
*L2Distance)...
*/
template <typename PointT>
struct L1Distance
{
static inline float compute(const PointT& p, const PointT& q)
{
float diff1 = get<0>(p) - get<0>(q);
float diff2 = get<1>(p) - get<1>(q);
float diff3 = get<2>(p) - get<2>(q);
return std::abs(diff1) + std::abs(diff2) + std::abs(diff3);
}
static inline float norm(float x, float y, float z)
{
return std::abs(x) + std::abs(y) + std::abs(z);
}
static inline float sqr(float r)
{
return r;
}
static inline float sqrt(float r)
{
return r;
}
};
template <typename PointT>
struct L2Distance
{
static inline float compute(const PointT& p, const PointT& q)
{
float diff1 = get<0>(p) - get<0>(q);
float diff2 = get<1>(p) - get<1>(q);
float diff3 = get<2>(p) - get<2>(q);
return std::pow(diff1, 2) + std::pow(diff2, 2) + std::pow(diff3, 2);
}
static inline float norm(float x, float y, float z)
{
return std::pow(x, 2) + std::pow(y, 2) + std::pow(z, 2);
}
static inline float sqr(float r)
{
return r * r;
}
static inline float sqrt(float r)
{
return std::sqrt(r);
}
};
template <typename PointT>
struct MaxDistance
{
static inline float compute(const PointT& p, const PointT& q)
{
float diff1 = std::abs(get<0>(p) - get<0>(q));
float diff2 = std::abs(get<1>(p) - get<1>(q));
float diff3 = std::abs(get<2>(p) - get<2>(q));
float maximum = diff1;
if (diff2 > maximum) maximum = diff2;
if (diff3 > maximum) maximum = diff3;
return maximum;
}
static inline float norm(float x, float y, float z)
{
float maximum = x;
if (y > maximum) maximum = y;
if (z > maximum) maximum = z;
return maximum;
}
static inline float sqr(float r)
{
return r;
}
static inline float sqrt(float r)
{
return r;
}
};
struct OctreeParams
{
public:
OctreeParams(uint32_t bucketSize = 32, bool copyPoints = false, float minExtent = 0.0f)
: bucketSize(bucketSize), copyPoints(copyPoints), minExtent(minExtent)
{
}
uint32_t bucketSize;
bool copyPoints;
float minExtent;
};
/** \brief Index-based Octree implementation offering different queries and insertion/removal of points.
*
* The index-based Octree uses a successor relation and a startIndex in each Octant to improve runtime
* performance for radius queries. The efficient storage of the points by relinking list elements
* bases on the insight that children of an Octant contain disjoint subsets of points inside the Octant and
* that we can reorganize the points such that we get an continuous single connect list that we can use to
* store in each octant the start of this list.
*
* Special about the implementation is that it allows to search for neighbors with arbitrary p-norms, which
* distinguishes it from most other Octree implementations.
*
* We decided to implement the Octree using a template for points and containers. The container must have an
* operator[], which allows to access the points, and a size() member function, which allows to get the size of the
* container. For the points, we used an access trait to access the coordinates inspired by boost.geometry.
* The implementation already provides a general access trait, which expects to have public member variables x,y,z.
*
* f you use the implementation or ideas from the corresponding paper in your academic work, it would be nice if you
* cite the corresponding paper:
*
* J. Behley, V. Steinhage, A.B. Cremers. Efficient Radius Neighbor Search in Three-dimensional Point Clouds,
* Proc. of the IEEE International Conference on Robotics and Automation (ICRA), 2015.
*
* In future, we might add also other neighbor queries and implement the removal and adding of points.
*
* \version 0.1-icra
*
* \author behley
*/
template <typename PointT, typename ContainerT = std::vector<PointT> >
class Octree
{
public:
Octree();
~Octree();
/** \brief initialize octree with all points **/
void initialize(const ContainerT& pts, const OctreeParams& params = OctreeParams());
/** \brief initialize octree only from pts that are inside indexes. **/
void initialize(const ContainerT& pts, const std::vector<uint32_t>& indexes,
const OctreeParams& params = OctreeParams());
/** \brief remove all data inside the octree. **/
void clear();
/** \brief radius neighbor queries where radius determines the maximal radius of reported indices of points in
* resultIndices **/
template <typename Distance>
void radiusNeighbors(const PointT& query, float radius, std::vector<uint32_t>& resultIndices) const;
/** \brief radius neighbor queries with explicit (squared) distance computation. **/
template <typename Distance>
void radiusNeighbors(const PointT& query, float radius, std::vector<uint32_t>& resultIndices,
std::vector<float>& distances) const;
/** \brief nearest neighbor queries. Using minDistance >= 0, we explicitly disallow self-matches.
* @return index of nearest neighbor n with Distance::compute(query, n) > minDistance and otherwise -1.
**/
template <typename Distance>
int32_t findNeighbor(const PointT& query, float minDistance = -1) const;
protected:
class Octant
{
public:
Octant();
~Octant();
bool isLeaf;
// bounding box of the octant needed for overlap and contains tests...
float x, y, z; // center
float extent; // half of side-length
uint32_t start, end; // start and end in succ_
uint32_t size; // number of points
Octant* child[8];
};
// not copyable, not assignable ...
Octree(Octree&);
Octree& operator=(const Octree& oct);
/**
* \brief creation of an octant using the elements starting at startIdx.
*
* The method reorders the index such that all points are correctly linked to successors belonging
* to the same octant.
*
* \param x,y,z center coordinates of octant
* \param extent extent of octant
* \param startIdx first index of points inside octant
* \param endIdx last index of points inside octant
* \param size number of points in octant
*
* \return octant with children nodes.
*/
Octant* createOctant(float x, float y, float z, float extent, uint32_t startIdx, uint32_t endIdx, uint32_t size);
/** @return true, if search finished, otherwise false. **/
template <typename Distance>
bool findNeighbor(const Octant* octant, const PointT& query, float minDistance, float& maxDistance,
int32_t& resultIndex) const;
template <typename Distance>
void radiusNeighbors(const Octant* octant, const PointT& query, float radius, float sqrRadius,
std::vector<uint32_t>& resultIndices) const;
template <typename Distance>
void radiusNeighbors(const Octant* octant, const PointT& query, float radius, float sqrRadius,
std::vector<uint32_t>& resultIndices, std::vector<float>& distances) const;
/** \brief test if search ball S(q,r) overlaps with octant
*
* @param query query point
* @param radius "squared" radius
* @param o pointer to octant
*
* @return true, if search ball overlaps with octant, false otherwise.
*/
template <typename Distance>
static bool overlaps(const PointT& query, float radius, float sqRadius, const Octant* o);
/** \brief test if search ball S(q,r) contains octant
*
* @param query query point
* @param sqRadius "squared" radius
* @param octant pointer to octant
*
* @return true, if search ball overlaps with octant, false otherwise.
*/
template <typename Distance>
static bool contains(const PointT& query, float sqRadius, const Octant* octant);
/** \brief test if search ball S(q,r) is completely inside octant.
*
* @param query query point
* @param radius radius r
* @param octant point to octant.
*
* @return true, if search ball is completely inside the octant, false otherwise.
*/
template <typename Distance>
static bool inside(const PointT& query, float radius, const Octant* octant);
OctreeParams params_;
Octant* root_;
const ContainerT* data_;
std::vector<uint32_t> successors_; // single connected list of next point indices...
friend class ::OctreeTest;
};
template <typename PointT, typename ContainerT>
Octree<PointT, ContainerT>::Octant::Octant()
: isLeaf(true), x(0.0f), y(0.0f), z(0.0f), extent(0.0f), start(0), end(0), size(0)
{
memset(&child, 0, 8 * sizeof(Octant*));
}
template <typename PointT, typename ContainerT>
Octree<PointT, ContainerT>::Octant::~Octant()
{
for (uint32_t i = 0; i < 8; ++i) delete child[i];
}
template <typename PointT, typename ContainerT>
Octree<PointT, ContainerT>::Octree()
: root_(0), data_(0)
{
}
template <typename PointT, typename ContainerT>
Octree<PointT, ContainerT>::~Octree()
{
delete root_;
if (params_.copyPoints) delete data_;
}
template <typename PointT, typename ContainerT>
void Octree<PointT, ContainerT>::initialize(const ContainerT& pts, const OctreeParams& params)
{
clear();
params_ = params;
if (params_.copyPoints)
data_ = new ContainerT(pts);
else
data_ = &pts;
const uint32_t N = pts.size();
successors_ = std::vector<uint32_t>(N);
// determine axis-aligned bounding box.
float min[3], max[3];
min[0] = get<0>(pts[0]);
min[1] = get<1>(pts[0]);
min[2] = get<2>(pts[0]);
max[0] = min[0];
max[1] = min[1];
max[2] = min[2];
for (uint32_t i = 0; i < N; ++i)
{
// initially each element links simply to the following element.
successors_[i] = i + 1;
const PointT& p = pts[i];
if (get<0>(p) < min[0]) min[0] = get<0>(p);
if (get<1>(p) < min[1]) min[1] = get<1>(p);
if (get<2>(p) < min[2]) min[2] = get<2>(p);
if (get<0>(p) > max[0]) max[0] = get<0>(p);
if (get<1>(p) > max[1]) max[1] = get<1>(p);
if (get<2>(p) > max[2]) max[2] = get<2>(p);
}
float ctr[3] = {min[0], min[1], min[2]};
float maxextent = 0.5f * (max[0] - min[0]);
ctr[0] += maxextent;
for (uint32_t i = 1; i < 3; ++i)
{
float extent = 0.5f * (max[i] - min[i]);
ctr[i] += extent;
if (extent > maxextent) maxextent = extent;
}
root_ = createOctant(ctr[0], ctr[1], ctr[2], maxextent, 0, N - 1, N);
}
template <typename PointT, typename ContainerT>
void Octree<PointT, ContainerT>::initialize(const ContainerT& pts, const std::vector<uint32_t>& indexes,
const OctreeParams& params)
{
clear();
params_ = params;
if (params_.copyPoints)
data_ = new ContainerT(pts);
else
data_ = &pts;
const uint32_t N = pts.size();
successors_ = std::vector<uint32_t>(N);
if (indexes.size() == 0) return;
// determine axis-aligned bounding box.
uint32_t lastIdx = indexes[0];
float min[3], max[3];
min[0] = get<0>(pts[lastIdx]);
min[1] = get<1>(pts[lastIdx]);
min[2] = get<2>(pts[lastIdx]);
max[0] = min[0];
max[1] = min[1];
max[2] = min[2];
for (uint32_t i = 1; i < indexes.size(); ++i)
{
uint32_t idx = indexes[i];
// initially each element links simply to the following element.
successors_[lastIdx] = idx;
const PointT& p = pts[idx];
if (get<0>(p) < min[0]) min[0] = get<0>(p);
if (get<1>(p) < min[1]) min[1] = get<1>(p);
if (get<2>(p) < min[2]) min[2] = get<2>(p);
if (get<0>(p) > max[0]) max[0] = get<0>(p);
if (get<1>(p) > max[1]) max[1] = get<1>(p);
if (get<2>(p) > max[2]) max[2] = get<2>(p);
lastIdx = idx;
}
float ctr[3] = {min[0], min[1], min[2]};
float maxextent = 0.5f * (max[0] - min[0]);
ctr[0] += maxextent;
for (uint32_t i = 1; i < 3; ++i)
{
float extent = 0.5f * (max[i] - min[i]);
ctr[i] += extent;
if (extent > maxextent) maxextent = extent;
}
root_ = createOctant(ctr[0], ctr[1], ctr[2], maxextent, indexes[0], lastIdx, indexes.size());
}
template <typename PointT, typename ContainerT>
void Octree<PointT, ContainerT>::clear()
{
delete root_;
if (params_.copyPoints) delete data_;
root_ = 0;
data_ = 0;
successors_.clear();
}
template <typename PointT, typename ContainerT>
typename Octree<PointT, ContainerT>::Octant* Octree<PointT, ContainerT>::createOctant(float x, float y, float z,
float extent, uint32_t startIdx,
uint32_t endIdx, uint32_t size)
{
// For a leaf we don't have to change anything; points are already correctly linked or correctly reordered.
Octant* octant = new Octant;
octant->isLeaf = true;
octant->x = x;
octant->y = y;
octant->z = z;
octant->extent = extent;
octant->start = startIdx;
octant->end = endIdx;
octant->size = size;
static const float factor[] = {-0.5f, 0.5f};
// subdivide subset of points and re-link points according to Morton codes
if (size > params_.bucketSize && extent > 2 * params_.minExtent)
{
octant->isLeaf = false;
const ContainerT& points = *data_;
std::vector<uint32_t> childStarts(8, 0);
std::vector<uint32_t> childEnds(8, 0);
std::vector<uint32_t> childSizes(8, 0);
// re-link disjoint child subsets...
uint32_t idx = startIdx;
for (uint32_t i = 0; i < size; ++i)
{
const PointT& p = points[idx];
// determine Morton code for each point...
uint32_t mortonCode = 0;
if (get<0>(p) > x) mortonCode |= 1;
if (get<1>(p) > y) mortonCode |= 2;
if (get<2>(p) > z) mortonCode |= 4;
// set child starts and update successors...
if (childSizes[mortonCode] == 0)
childStarts[mortonCode] = idx;
else
successors_[childEnds[mortonCode]] = idx;
childSizes[mortonCode] += 1;
childEnds[mortonCode] = idx;
idx = successors_[idx];
}
// now, we can create the child nodes...
float childExtent = 0.5f * extent;
bool firsttime = true;
uint32_t lastChildIdx = 0;
for (uint32_t i = 0; i < 8; ++i)
{
if (childSizes[i] == 0) continue;
float childX = x + factor[(i & 1) > 0] * extent;
float childY = y + factor[(i & 2) > 0] * extent;
float childZ = z + factor[(i & 4) > 0] * extent;
octant->child[i] = createOctant(childX, childY, childZ, childExtent, childStarts[i], childEnds[i], childSizes[i]);
if (firsttime)
octant->start = octant->child[i]->start;
else
successors_[octant->child[lastChildIdx]->end] =
octant->child[i]->start; // we have to ensure that also the child ends link to the next child start.
lastChildIdx = i;
octant->end = octant->child[i]->end;
firsttime = false;
}
}
return octant;
}
template <typename PointT, typename ContainerT>
template <typename Distance>
void Octree<PointT, ContainerT>::radiusNeighbors(const Octant* octant, const PointT& query, float radius,
float sqrRadius, std::vector<uint32_t>& resultIndices) const
{
const ContainerT& points = *data_;
// if search ball S(q,r) contains octant, simply add point indexes.
if (contains<Distance>(query, sqrRadius, octant))
{
uint32_t idx = octant->start;
for (uint32_t i = 0; i < octant->size; ++i)
{
resultIndices.push_back(idx);
idx = successors_[idx];
}
return; // early pruning.
}
if (octant->isLeaf)
{
uint32_t idx = octant->start;
for (uint32_t i = 0; i < octant->size; ++i)
{
const PointT& p = points[idx];
float dist = Distance::compute(query, p);
if (dist < sqrRadius) resultIndices.push_back(idx);
idx = successors_[idx];
}
return;
}
// check whether child nodes are in range.
for (uint32_t c = 0; c < 8; ++c)
{
if (octant->child[c] == 0) continue;
if (!overlaps<Distance>(query, radius, sqrRadius, octant->child[c])) continue;
radiusNeighbors<Distance>(octant->child[c], query, radius, sqrRadius, resultIndices);
}
}
template <typename PointT, typename ContainerT>
template <typename Distance>
void Octree<PointT, ContainerT>::radiusNeighbors(const Octant* octant, const PointT& query, float radius,
float sqrRadius, std::vector<uint32_t>& resultIndices,
std::vector<float>& distances) const
{
const ContainerT& points = *data_;
// if search ball S(q,r) contains octant, simply add point indexes and compute squared distances.
if (contains<Distance>(query, sqrRadius, octant))
{
uint32_t idx = octant->start;
for (uint32_t i = 0; i < octant->size; ++i)
{
resultIndices.push_back(idx);
distances.push_back(Distance::compute(query, points[idx]));
idx = successors_[idx];
}
return; // early pruning.
}
if (octant->isLeaf)
{
uint32_t idx = octant->start;
for (uint32_t i = 0; i < octant->size; ++i)
{
const PointT& p = points[idx];
float dist = Distance::compute(query, p);
if (dist < sqrRadius)
{
resultIndices.push_back(idx);
distances.push_back(dist);
}
idx = successors_[idx];
}
return;
}
// check whether child nodes are in range.
for (uint32_t c = 0; c < 8; ++c)
{
if (octant->child[c] == 0) continue;
if (!overlaps<Distance>(query, radius, sqrRadius, octant->child[c])) continue;
radiusNeighbors<Distance>(octant->child[c], query, radius, sqrRadius, resultIndices, distances);
}
}
template <typename PointT, typename ContainerT>
template <typename Distance>
void Octree<PointT, ContainerT>::radiusNeighbors(const PointT& query, float radius,
std::vector<uint32_t>& resultIndices) const
{
resultIndices.clear();
if (root_ == 0) return;
float sqrRadius = Distance::sqr(radius); // "squared" radius
radiusNeighbors<Distance>(root_, query, radius, sqrRadius, resultIndices);
}
template <typename PointT, typename ContainerT>
template <typename Distance>
void Octree<PointT, ContainerT>::radiusNeighbors(const PointT& query, float radius,
std::vector<uint32_t>& resultIndices,
std::vector<float>& distances) const
{
resultIndices.clear();
distances.clear();
if (root_ == 0) return;
float sqrRadius = Distance::sqr(radius); // "squared" radius
radiusNeighbors<Distance>(root_, query, radius, sqrRadius, resultIndices, distances);
}
template <typename PointT, typename ContainerT>
template <typename Distance>
bool Octree<PointT, ContainerT>::overlaps(const PointT& query, float radius, float sqRadius, const Octant* o)
{
// we exploit the symmetry to reduce the test to testing if its inside the Minkowski sum around the positive quadrant.
float x = get<0>(query) - o->x;
float y = get<1>(query) - o->y;
float z = get<2>(query) - o->z;
x = std::abs(x);
y = std::abs(y);
z = std::abs(z);
float maxdist = radius + o->extent;
// Completely outside, since q' is outside the relevant area.
if (x > maxdist || y > maxdist || z > maxdist) return false;
int32_t num_less_extent = (x < o->extent) + (y < o->extent) + (z < o->extent);
// Checking different cases:
// a. inside the surface region of the octant.
if (num_less_extent > 1) return true;
// b. checking the corner region && edge region.
x = std::max(x - o->extent, 0.0f);
y = std::max(y - o->extent, 0.0f);
z = std::max(z - o->extent, 0.0f);
return (Distance::norm(x, y, z) < sqRadius);
}
template <typename PointT, typename ContainerT>
template <typename Distance>
bool Octree<PointT, ContainerT>::contains(const PointT& query, float sqRadius, const Octant* o)
{
// we exploit the symmetry to reduce the test to test
// whether the farthest corner is inside the search ball.
float x = get<0>(query) - o->x;
float y = get<1>(query) - o->y;
float z = get<2>(query) - o->z;
x = std::abs(x);
y = std::abs(y);
z = std::abs(z);
// reminder: (x, y, z) - (-e, -e, -e) = (x, y, z) + (e, e, e)
x += o->extent;
y += o->extent;
z += o->extent;
return (Distance::norm(x, y, z) < sqRadius);
}
template <typename PointT, typename ContainerT>
template <typename Distance>
int32_t Octree<PointT, ContainerT>::findNeighbor(const PointT& query, float minDistance) const
{
float maxDistance = std::numeric_limits<float>::infinity();
int32_t resultIndex = -1;
if(root_ == 0) return resultIndex;
findNeighbor<Distance>(root_, query, minDistance, maxDistance, resultIndex);
return resultIndex;
}
template <typename PointT, typename ContainerT>
template <typename Distance>
bool Octree<PointT, ContainerT>::findNeighbor(const Octant* octant, const PointT& query, float minDistance,
float& maxDistance, int32_t& resultIndex) const
{
const ContainerT& points = *data_;
// 1. first descend to leaf and check in leafs points.
if (octant->isLeaf)
{
uint32_t idx = octant->start;
float sqrMaxDistance = Distance::sqr(maxDistance);
float sqrMinDistance = (minDistance < 0) ? minDistance : Distance::sqr(minDistance);
for (uint32_t i = 0; i < octant->size; ++i)
{
const PointT& p = points[idx];
float dist = Distance::compute(query, p);
if (dist > sqrMinDistance && dist < sqrMaxDistance)
{
resultIndex = idx;
sqrMaxDistance = dist;
}
idx = successors_[idx];
}
maxDistance = Distance::sqrt(sqrMaxDistance);
return inside<Distance>(query, maxDistance, octant);
}
// determine Morton code for each point...
uint32_t mortonCode = 0;
if (get<0>(query) > octant->x) mortonCode |= 1;
if (get<1>(query) > octant->y) mortonCode |= 2;
if (get<2>(query) > octant->z) mortonCode |= 4;
if (octant->child[mortonCode] != 0)
{
if (findNeighbor<Distance>(octant->child[mortonCode], query, minDistance, maxDistance, resultIndex)) return true;
}
// 2. if current best point completely inside, just return.
float sqrMaxDistance = Distance::sqr(maxDistance);
// 3. check adjacent octants for overlap and check these if necessary.
for (uint32_t c = 0; c < 8; ++c)
{
if (c == mortonCode) continue;
if (octant->child[c] == 0) continue;
if (!overlaps<Distance>(query, maxDistance, sqrMaxDistance, octant->child[c])) continue;
if (findNeighbor<Distance>(octant->child[c], query, minDistance, maxDistance, resultIndex))
return true; // early pruning
}
// all children have been checked...check if point is inside the current octant...
return inside<Distance>(query, maxDistance, octant);
}
template <typename PointT, typename ContainerT>
template <typename Distance>
bool Octree<PointT, ContainerT>::inside(const PointT& query, float radius, const Octant* octant)
{
// we exploit the symmetry to reduce the test to test
// whether the farthest corner is inside the search ball.
float x = get<0>(query) - octant->x;
float y = get<1>(query) - octant->y;
float z = get<2>(query) - octant->z;
x = std::abs(x) + radius;
y = std::abs(y) + radius;
z = std::abs(z) + radius;
if (x > octant->extent) return false;
if (y > octant->extent) return false;
if (z > octant->extent) return false;
return true;
}
}
#endif /* OCTREE_HPP_ */