-
Notifications
You must be signed in to change notification settings - Fork 7
/
opt06_fgh.m
80 lines (74 loc) · 1.78 KB
/
opt06_fgh.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
function [ f, g, H ] = opt06_fgh ( x, flag )
%% OPT06_FGH evaluates F, G and H for test case #6.
%
% Discussion:
%
% This example is the extended Rosenbrock function.
%
% The optimizing value is
%
% X* = (1,1,...)
%
% Modified:
%
% 09 January 2008
%
% Author:
%
% Jeff Borggaard,
% Gene Cliff,
% Virginia Tech.
%
% Reference:
%
% John Dennis, Robert Schnabel,
% Numerical Methods for Unconstrained Optimization
% and Nonlinear Equations,
% SIAM, 1996,
% ISBN13: 978-0-898713-64-0,
% LC: QA402.5.D44.
%
% Parameters:
%
% Input, real X(N), the evaluation point.
% Note that the dimension of X must be even.
%
% Input, string FLAG, indicates what must be computed.
% 'f' means only the value of F is needed,
% 'g' means only the value of G is needed,
% 'all' means F, G and H (if appropriate) are needed.
% It is acceptable to behave as though FLAG was 'all'
% on every call.
%
% Output, real F, the optimization function.
%
% Output, real G(N,1), the gradient column vector.
%
% Output, real H(N,N), the Hessian matrix.
%
n = length ( x );
if ( mod ( n, 2 ) ~= 0 )
fprintf ( '\n' );
fprintf ( 'OPT06_FGH - Fatal error!\n' );
fprintf ( ' The input vector X should have even length.\n'),
fprintf ( ' Instead, it has length = %d.\n', n );
keyboard
end
r = zeros(n,1);
for i=1:n/2
r(2*i-1) = 10*( x(2*i)-x(2*i-1)^2 );
r(2*i ) = 1 - x(2*i-1);
end
f = r' * r;
g = zeros(n,1);
for i=1:n/2
g(2*i-1) =-400*( x(2*i)-x(2*i-1)^2 )*x(2*i-1) - 2*(1-x(2*i-1));
g(2*i ) = 200*( x(2*i)-x(2*i-1)^2 );
end
H = zeros(n,n);
for i=1:n/2
H(2*i-1,2*i-1) = 1200*x(2*i-1)^2 - 400*x(2*i) + 2;
H(2*i ,2*i-1) =-400*x(2*i-1);
H(2*i-1,2*i ) = H(2*i ,2*i-1);
H(2*i ,2*i ) = 200;
end