-
Notifications
You must be signed in to change notification settings - Fork 7
/
opt12_fgh.m
114 lines (101 loc) · 2.83 KB
/
opt12_fgh.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
function [ f, g, H ] = opt12_fgh ( x, flag )
%% OPT12_FGH evaluates F, G and H for test case #2.
%
% Discussion:
%
% This is the Beale function.
%
% Suggested initial values for X include:
%
% X init = ( 1, 1 )
%
% X init = ( 1, 4 ) (may have trouble converging)
%
% The optimizing value is
%
% X* = ( 3.0, 0.5 )
%
% and the optimal function value is
%
% F(X*) = 0.
%
% Modified:
%
% 28 January 2008
%
% Author:
%
% John Burkardt
%
% Reference:
%
% Evelyn Beale,
% On an Iterative Method for Finding a Local Minimum of a Function
% of More than One Variable,
% Technical Report 25,
% Statistical Techniques Research Group,
% Princeton University, 1958.
%
% Richard Brent,
% Algorithms for Minimization with Derivatives,
% Dover, 2002,
% ISBN: 0-486-41998-3,
% LC: QA402.5.B74.
%
% Parameters:
%
% Input, real X(2), the evaluation point.
%
% Input, string FLAG, indicates what must be computed.
% 'f' means only the value of F is needed,
% 'g' means only the value of G is needed,
% 'all' means F, G and H (if appropriate) are needed.
% It is acceptable to behave as though FLAG was 'all'
% on every call.
%
% Output, real F, the optimization function.
%
% Output, real G(2,1), the gradient column vector.
%
% Output, real H(2,2), the Hessian matrix.
%
n = length ( x );
if ( n ~= 2 )
fprintf ( '\n' );
fprintf ( 'OPT12_FGH - Fatal error!\n' );
fprintf ( ' The input vector X should have length 2.\n'),
fprintf ( ' Instead, it has length = %d.\n', n );
keyboard
end
f1 = 1.5 - x(1) * ( 1.0 - x(2) );
f2 = 2.25 - x(1) * ( 1.0 - x(2) * x(2) );
f3 = 2.625 - x(1) * ( 1.0 - x(2) * x(2) * x(2) );
f = f1 * f1 + f2 * f2 + f3 * f3;
df1dx1 = - ( 1.0 - x(2) );
df1dx2 = x(1);
df2dx1 = - ( 1.0 - x(2) * x(2) );
df2dx2 = 2.0 * x(1) * x(2);
df3dx1 = - ( 1.0 - x(2) * x(2) * x(2) );
df3dx2 = 3.0 * x(1) * x(2) * x(2);
g(1,1) = 2.0 * ( f1 * df1dx1 + f2 * df2dx1 + f3 * df3dx1 );
g(2,1) = 2.0 * ( f1 * df1dx2 + f2 * df2dx2 + f3 * df3dx2 );
d2f1dx12 = 1.0;
d2f1dx21 = 1.0;
d2f2dx12 = 2.0 * x(2);
d2f2dx21 = 2.0 * x(2);
d2f2dx22 = 2.0 * x(1);
d2f3dx12 = 3.0 * x(2) * x(2);
d2f3dx21 = 3.0 * x(2) * x(2);
d2f3dx22 = 6.0 * x(1) * x(2);
H(1,1) = 2.0 * ( df1dx1 * df1dx1 ...
+ df2dx1 * df2dx1 ...
+ df3dx1 * df3dx1 );
H(1,2) = 2.0 * ( df1dx2 * df1dx1 + f1 * d2f1dx12 ...
+ df2dx2 * df2dx1 + f2 * d2f2dx12 ...
+ df3dx2 * df3dx1 + f3 * d2f3dx12 );
H(2,1) = 2.0 * ( df1dx1 * df1dx2 + f1 * d2f1dx21 ...
+ df2dx1 * df2dx2 + f2 * d2f2dx21 ...
+ df3dx1 * df3dx2 + f3 * d2f3dx21 );
H(2,2) = 2.0 * ( df1dx2 * df1dx2 ...
+ df2dx2 * df2dx2 + f2 * d2f2dx22 ...
+ df3dx2 * df3dx2 + f3 * d2f3dx22 );