-
Notifications
You must be signed in to change notification settings - Fork 7
/
opt13_fgh.m
72 lines (67 loc) · 1.98 KB
/
opt13_fgh.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
function [ f, g, H ] = opt13_fgh ( x, flag )
%% OPT13_FGH evaluates F, G and H for test case #13.
%
% Discussion:
%
% This function has a local minimum:
%
% X* = ( 0.28581..., 0.27936...), F(X*) = 5.9225...
%
% and a global minimum:
%
% X* = ( -21.026653..., -36.760090...), F(X*) = 0.
%
% Suggested starting point:
%
% X = ( 1, 1 ), F(X) = 3.33 * 10^6.
%
% Modified:
%
% 12 February 2008
%
% Author:
%
% John Burkardt
%
% Reference:
%
% David Himmelblau,
% Applied Nonlinear Programming,
% McGraw Hill, 1972,
% ISBN13: 978-0070289215,
% LC: T57.8.H55.
%
% Parameters:
%
% Input, real X(2), the evaluation point.
%
% Input, string FLAG, indicates what must be computed.
% 'f' means only the value of F is needed,
% 'g' means only the value of G is needed,
% 'all' means F, G and H (if appropriate) are needed.
% It is acceptable to behave as though FLAG was 'all'
% on every call.
%
% Output, real F, the optimization function.
%
% Output, real G(2,1), the gradient column vector.
%
% Output, real H(2,2), the Hessian matrix.
%
if ( length ( x ) ~= 2 )
error ( 'Error: function expects a two dimensional input\n' );
end
f = ( x(1)^2 + 12 * x(2) - 1 )^2 ...
+ ( 49 * x(1)^2 + 49 * x(2)^2 + 84 * x(1) + 2324 * x(2) - 681 )^2;
g(1,1) = 9604 * x(1) * x(2)^2 + 8232 * x(2)^2 + 455552 * x(1) * x(2)...
+ 390432 * x(2) + 9608 * x(1) * x(1) * x(1) + 24696 * x(1) * x(1) ...
- 119368 * x(1) - 114408;
g(2,1) = -3165312 + 390432 * x(1) + 227776 * x(1)^2 + 10668764 * x(2) ...
+ 16464 * x(1) * x(2) + 9604 * x(1)^2 * x(2) ...
+ 683256 * x(2)^2 + 9604 * x(2)^3;
H(1,1) = - 119368 + 49392 * x(1) + 28824 * x(1)^2 ...
+ 455552 * x(2) + 9604 * x(2)^2;
H(1,2) = 390432 + 455552 * x(1) + 16464 * x(2) + 19208 * x(1) * x(2);
H(2,1) = 390432 + 455552 * x(1) + 16464 * x(2) + 19208 * x(1) * x(2);
H(2,2) = 10668764 + 16464 * x(1) + 9604*x(1)^2 + 1366512 * x(2) ...
+ 28812 * x(2)^2;