-
Notifications
You must be signed in to change notification settings - Fork 7
/
opt14_rj.m
67 lines (59 loc) · 1.51 KB
/
opt14_rj.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
function [ res, jac ] = opt14_rj ( x, flag )
%% OPT14_RJ evaluates RES and JAC for test case #14.
%
% Modified:
%
% 07 January 2008
%
% Author:
%
% Jeff Borggaard,
% Gene Cliff,
% Virginia Tech.
%
% Reference:
%
% John Dennis, Robert Schnabel,
% Numerical Methods for Unconstrained Optimization
% and Nonlinear Equations,
% SIAM, 1996,
% ISBN13: 978-0-898713-64-0,
% LC: QA402.5.D44.
%
% Parameters:
%
% Input, real X(3), the evaluation point.
%
% Input, string FLAG, indicates what must be computed.
% 'f' means only the value of RES is needed,
% 'g' means only the value of JAC is needed,
% 'all' means RES and JAC are needed.
% It is acceptable to behave as though FLAG was 'all'
% on every call.
%
% Output, real RES(3,1), the function column vector.
%
% Output, real JAC(3,3), the Jacobian matrix.
%
n = length ( x );
if ( n ~= 3 )
fprintf ( '\n' );
fprintf ( 'OPT14_RJ - Fatal error!\n' );
fprintf ( ' The input vector X should have length 3.\n'),
fprintf ( ' Instead, it has length = %d.\n', n );
keyboard
end
res = zeros(n,1);
res(1,1) = x(1)^2*x(2) + x(1)*x(2)^2;
res(2,1) = 3 * x(1) * x(2)^2 * x(3) - x(1) * x(3) - 1;
res(3,1) = x(1)*x(3) - 2;
jac = zeros(n,n);
jac(1,1) = 2 * x(1) * x(2) + x(2)^2;
jac(1,2) = x(1)^2 + 2 * x(1) * x(2);
jac(1,3) = 0;
jac(2,1) = 3 * x(2)^2 * x(3) - x(3);
jac(2,2) = 3 * 2 * x(1) * x(2) * x(3);
jac(2,3) = 3 * x(1) * x(2)^2 - x(1);
jac(3,1) = x(3);
jac(3,2) = 0;
jac(3,3) = x(1);