forked from randaller/llama-chat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example-chat.py
122 lines (97 loc) · 3.91 KB
/
example-chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
from typing import Tuple
import os
import sys
import torch
import fire
import time
import json
import pyarrow as pa
from pathlib import Path
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
def load(
ckpt_dir: str,
tokenizer_path: str,
max_seq_len: int,
max_batch_size: int,
) -> LLaMA:
start_time = time.time()
arrow_dir = Path(ckpt_dir).expanduser() / 'arrow'
if not arrow_dir.exists():
print('Converting checkpoints to arrow format')
checkpoints = sorted(Path(ckpt_dir).expanduser().glob("*.pth"))
for ckpt_file in checkpoints:
print(ckpt_file)
index = ckpt_file.parts[-1].split('.')[-2]
ckpt = torch.load(ckpt_file, map_location='cpu')
(arrow_dir / index).mkdir(parents=True, exist_ok=True)
for k, v in ckpt.items():
tens = pa.Tensor.from_numpy(v.numpy())
with pa.output_stream(arrow_dir / index / k) as f:
pa.ipc.write_tensor(tens, f)
ckpt = None
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
print("Loading checkpoint")
segments = sorted((arrow_dir / '00').glob("*"))
checkpoint = {}
files = []
for seg in segments:
f = pa.memory_map(str(seg))
files.append(f)
t = pa.ipc.read_tensor(f).to_numpy()
t = torch.from_numpy(t)
checkpoint[seg.parts[-1]] = t
# torch.set_default_tensor_type(torch.cuda.HalfTensor)
torch.set_default_tensor_type(torch.BFloat16Tensor)
# torch.set_default_tensor_type(torch.FloatTensor)
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
)
print("Loading tokenizer")
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
print("Loading model")
model = Transformer(model_args)
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
#model.load_state_dict(torch.load(checkpoints[-1]), strict=False)
model.load_state_dict(torch.load(checkpoints[-1], map_location=torch.device('cpu')), strict=False)
for f in files:
f.close()
files = None
generator = LLaMA(model, tokenizer)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return generator
def main(
ckpt_dir: str = './model',
tokenizer_path: str = './tokenizer/tokenizer.model',
temperature: float = 0.8,
top_p: float = 0.95, # use 0.95 or so for top_p sampler, and 0.0 for top_k sampler
top_k: int = 40,
repetition_penalty: float = (1.0 / 0.85), # 1.0 to disable repetition_penalty
sampler: str = 'top_p', # top_p or top_k
max_seq_len: int = 2048,
max_batch_size: int = 1,
):
torch.set_default_dtype(torch.bfloat16)
generator = load(ckpt_dir, tokenizer_path, max_seq_len, max_batch_size)
ctx = """A dialog, where User interacts with AI. AI is helpful, kind, obedient, honest, and knows its own limits.
User: Hello, AI.
AI: Hello! How can I assist you today?
"""
while True:
prompt = input(f'User: ')
if ctx != "":
ctx = ctx + "User: " + prompt + "\n"
else:
ctx = prompt + "\n"
ctx = (ctx[-1920:]) if len(ctx) >= 2048 else ctx
if len(ctx.strip()) > 0:
prompts = [ctx]
results = generator.generate(
prompts, max_gen_len=max_seq_len, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, sampler=sampler
)
ctx = results[0]
if __name__ == "__main__":
fire.Fire(main)