-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfitzhugh.py
252 lines (192 loc) · 8.9 KB
/
fitzhugh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# coding: utf-8
# Numerical Solution of the Generalized
# Burgers-Huxley Equation by Exponential Time
# Differencing Scheme
# rq : elle est complètement fausse mon intégrale de cauchy?!?!
import numpy as np
import scipy.signal
import scipy.ndimage
import numpy as np
import time
import sys
from scipy.special import factorial
'''
We consider a spatial domain of size d × d, with N × N samples
Expressed in the spectral domain, the system we solve is
OUTDATED !!!!!
∂ₜ U [k₁,k₂] = -[Dᵤ ( (2πk₁/d)^2 + (2πk₂/d)^2)] U[k₁,k₂] - TF[TF^-1(U) (TF^-1(V))^2] + F N^2 δ_{k₁,k₂} - F U[k₁,k₂]
∂ₜ V [k₁,k₂] = -[Dᵥ ( (2πk₁/d)^2 + (2πk₂/d)^2)] V[k₁,k₂] + TF[TF^-1(U) (TF^-1(V))^2] - (F + k) V[k₁,k₂]
with U = TF(u) , V = TF(v)
If we decompose the linear and non-linear parts of the equations, following the notations of "Fourth order time-stepping for stiff PDEs, the system reads:
∂ₜ U[k₁, k₂] = Lᵤ U[k₁,k₂] + Nᵤ(U[k₁,k₂], V[k₁,k₂]) + F N^2 δ_{k₁,k₂}
∂ₜ V[k₁, k₂] = Lᵥ V[k₁,k₂] - Nᵤ(U[k₁,k₂], V[k₁,k₂])
with Lᵤ U[k₁,k₂] = -[Dᵤ ( (2πk₁/d)^2 + (2πk₂/d)^2) + F] U[k₁,k₂]
Nᵤ(U[k₁,k₂], V[k₁,k₂]) = -TF[TF^-1(U) (TF^-1(V))^2]
Lᵥ V[k₁,k₂] = -[Dᵥ ( (2πk₁/d)^2 + (2πk₂/d)^2) + (F + k)] V[k₁,k₂]
and we should not forget the term F δ_{k₁,k₂} which introduces a F dt δ_{k₁,k₂} in the integration with dt the time step
we can then use the formulas of Cox and Mathews with the numerical stabilization procedure of Kassam, Trefethen for computing
the terms like (e^z - 1)/z with the Cauchy Integral
References:
- Notes on FFT-based differentiation, [Johnson, 2011]
- Fourth-order time stepping for stiff PDEs, [Kassam, Trefethen, 2005]
'''
class SpectralModel:
''' Mode can be in ETDFD or ETDRK4 '''
def __init__(self, param_name, width, height, d=1., dt=0.1, mode='ETDFD'):
self.param_name = param_name
if(self.param_name == 'labyrinth'):
self.a0 = 0 #-0.1
self.a1 = 2
self.epsilon = 0.05
self.delta = 4.
# self.Ku = 1e-4
# self.a = 0.1
# self.epsilon = 0.01
# self.beta = 0.5
# self.gamma = 1.
else:
raise Exception("Unknown parameters")
self.width = width
self.height = height
#self.h = d/self.width
self.d = d
self.dt = dt
self.noise = 0.2
self.cdtype = np.complex64
self.fdtype = np.float32
self.tf = np.zeros((2, self.height, self.width), dtype=self.cdtype)
self.mode = mode
if(not self.mode in ['ETDFD']):
print("The numerical scheme you mentioned is not implemented")
raise Exception("Unknown numerical scheme, must be ETDFD")
# Precompute various ETDRK4 scalar quantities
k1, k2 = np.meshgrid(np.arange(self.width).astype(float), np.arange(self.height).astype(self.fdtype))
k1[:,self.width/2+1:] -= self.width
k2[self.height/2+1:,:] -= self.height
k1[:,0] = 0
k2[0,:] = 0
k1 *= 2.0 * np.pi / self.width
k2 *= 2.0 * np.pi / self.height
k = -(k1**2 + k2**2)
self.E = np.zeros((self.height, self.width, 2, 2))
self.FN = np.zeros((self.height, self.width, 2, 2))
for i in range(self.height):
for j in range(self.width):
Luv2x2 = np.zeros((2, 2))
# Luv2x2[0, 0] = 1 + k[i, j]
# Luv2x2[0, 1] = -1
# Luv2x2[1, 0] = self.epsilon
# Luv2x2[1, 1] = -self.epsilon * self.a1 + self.delta * k[i,j]
Luv2x2[0, 0] = 1 + 0.1 * k[i, j]
Luv2x2[0, 1] = -1
Luv2x2[1, 0] = self.epsilon
Luv2x2[1, 1] = -self.epsilon * self.a1 + k[i,j]
# Luv2x2[0, 0] = -self.a + self.Ku * k[i, j]
# Luv2x2[0, 1] = -1
# Luv2x2[1, 0] = self.epsilon * self.beta
# Luv2x2[1, 1] = -self.epsilon * self.gamma
self.E[i, j, :, :] = np.exp(self.dt * Luv2x2)
# We compute (self.dt * Luv2x2)^-1 * exp(self.dt * Luv2x2) - I) = dt * sum_(i>=1) (self.dt * Luv2x2)^i/(i+1)!
#for i in range(1,5):
# self.FN[i, j, :, :] += self.dt * ((self.dt * Luv2x2)/factorial(i+1))
# Luv2x2 = np.dot(Luv2x2 , Luv2x2 )
self.FN[i, j, :, :] = np.dot(self.E[i, j, :, :] - np.eye(2), np.linalg.inv(Luv2x2))
def init(self):
dN = self.width/32.
ut = np.zeros((self.height, self.width), dtype=np.float32)
ut[:, (self.width/2-dN):(self.width/2+dN)] = 1.
ut[ut <= 0] = 0
for i in range(self.height):
shift = int(5*np.exp(-(i - self.height/2.)**2/(2.*10.**2))*np.cos(i*2.*np.pi/20) + (2.0 * np.random.random() - 1.)* 3.)
ut[i,:] = np.roll(ut[i,:], shift)
vt = np.zeros((self.height, self.width), dtype=float)
self.tf[0, :, :] = np.fft.fft2(ut)
self.tf[1, :, :] = np.fft.fft2(vt)
def get_ut(self):
return np.real(np.fft.ifft2(self.tf[0, :, :]))
def get_vt(self):
return np.real(np.fft.ifft2(self.tf[1, :, :]))
def compute_Nuv(self):
u = np.fft.ifft2(self.tf[0, :, :]).real
#Nu = (1. + self.a) * u**2 - u**3
#Nv = np.zeros((self.height, self.width))#-self.epsilon * self.delta * np.fft.fft2(np.ones((self.height, self.width)))
Nu = -np.fft.fft2(u**3)
Nv = -self.epsilon * self.a0 * np.fft.fft2(np.ones((self.height, self.width)))
return np.stack((Nu, Nv), axis=0)
def step(self):
u = self.get_ut()
print("bef %f %f"%(u.min(), u.max()))
Nuv = self.compute_Nuv()
for i in range(self.height):
for j in range(self.width):
self.tf[:, i, j] = np.dot(self.E[i, j, :, :], self.tf[:,i, j]) + np.dot(self.FN[i, j, :, :], Nuv[:, i, j])
class Model:
def __init__(self, param_name, width, height,d=1.,dt=0.1):
self.param_name = param_name
if(self.param_name == 'labyrinth'):
self.a0 = -0.1
self.a1 = 2
self.epsilon = 0.05
self.delta = 4.
self.width = width
self.height = height
#self.h = d/self.width
self.dt = dt
self.noise = 0.01
self.ut_1 = np.zeros((self.height, self.width), dtype=float)
self.vt_1 = np.zeros((self.height, self.width), dtype=float)
self.ut = np.zeros((self.height, self.width), dtype=float)
self.vt = np.zeros((self.height, self.width), dtype=float)
self.stencil = np.array([[0, 1., 0], [1., -4., 1.], [0, 1., 0]], dtype=float)
def init(self):
dN = self.width/32
self.ut_1[:,:] = 0
self.ut_1[:, (self.width/2-dN):(self.width/2+dN)] = 1
self.ut_1 += self.noise * (2 * np.random.random((self.height, self.width)) - 1)
self.ut_1[self.ut_1 <= 0] = 0
for i in range(self.height):
shift = int(5*np.exp(-(i - self.height/2.)**2/(2.*10.**2))*np.cos(i*2.*np.pi/20) + (2.0 * np.random.random() - 1.)* 3.)
self.ut_1[i,:] = np.roll(self.ut_1[i,:], shift)
#self.ut_1 = 2*np.random.random((self.height, self.width))-1.
#self.vt_1 = 2*np.random.random((self.height, self.width))-1.
self.vt[:,:] = self.vt_1[:,:]
self.ut[:,:] = self.ut_1[:,:]
def laplacian(self, x):
return scipy.ndimage.convolve(x, self.stencil, mode='wrap')
def get_ut(self):
return self.ut
def erase_reactant(self, center, radius):
pass
def step(self):
lu = self.laplacian(self.ut_1)
lv = self.laplacian(self.vt_1)
self.ut[:,:] = self.ut_1 + self.dt * (lu + self.ut_1 * (1 - self.ut_1**2) - self.vt_1)
self.vt[:,:] = self.vt_1 + self.dt * ( self.delta * lv + self.epsilon * (self.ut_1 - self.a1 * self.vt_1 - self.a0))
self.ut_1, self.vt_1 = self.ut, self.vt
if(__name__ == '__main__'):
if(len(sys.argv) <= 1):
print("Usage : %s mode "% sys.argv[0])
print("With mode : ")
print(" 0 : spatial model with ndimage.convolve in python, forward euler") # 165 fps
print(" 1 : spectral model in python using ETDRK4")
sys.exit(-1)
mode = int(sys.argv[1])
height = 128
width = 128
pattern = 'labyrinth'
d = 1.
dt = 0.001
if(mode == 0):
model = Model(pattern, width, height)
elif mode == 1:
model = SpectralModel(pattern, height=height, width=width)
model.init()
epoch = 0
t0 = time.time()
while True:
model.step()
epoch += 1
if(epoch % 500 == 0):
t1 = time.time()
print("FPS : %f f/s" % (500 / (t1 - t0)))
t0 = t1